
Promises: Linguistic Support for Efficient Asynchronous
Procedure Calls in Distributed Systems

Barbara Liskov
Liuba Shrira

MIT Laboratory for Computer Science
Cambridge, MA. 02139

Abstract

This paper deals with the integration of an efficient asynchronous
remote procedure call mechanism into a programming language. It
describes a new data type called a promise that was designed to
support asynchronous calls. Promises allow a caller to run in parallel
with a call and to pick up the results of the call, including any
exceptions it raises, in a convenient and type-safe manner. The
paper also discusses efficient composition of sequences of
asynchronous calls to different locations in a network.

1. Introduction
This paper describes a new data type called a promise. Promises

were designed to support an efficient asynchronous remote
procedure call mechanism for use by mmponents of a distributed
program. A promise is a place holder for a value that will exist in the
future. It is created at the time a call is made. The call computes the
value of the promise, running in parallel with the program that made
the call. When it completes, its results are stored in the promise and
can then be “claimed” by the caller.

The development of promises was motivated by a new
communication mechanism, the call-stream. Call-streams were
invented as part of a project in heterogeneous computing [14], in
which programs written in different programming languages, and
running under different operating systems on different hardware, can
use one another as components over a network. Call-streams
combine the advantages of remote procedure calls and message
passing. Remote procedure calls have come to be the preferred
method of communication in a distributed system because programs
that use procedures are easier to understand and reason about than
those that explicitly send and receive messages. However, remote
calls require the caller to wait for a reply before continuing, and
therefore can lead to lower performance than explicit message
exchange.

This research was supported in part by the Advanced Research
Projects Agency of the Department of Defense, monitored by the
Office of Naval Research under contract N00014-83-K-0125, by the
National Science Foundation under grant DCR-8503662, and by the
Hebrew Technical Institute Postdoctoral Fellowship.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/
or specific permission.

0 1988 ACM O-8979 I -269- l/88/0006/0260 $1.50

Atlanta, Georgia, June 22-24, 1988

Call-streams allow a sender to make a sequence of calls to a
receiver without waiting for replies. The stream guarantees that the
calls will be delivered to the receiver in the order they were made
and that the replies from the receiver will be delivered to the sender
in call order. Provided that the receiver executes the calls so that
they appear to occur in call order, the effect of making a sequence of
calb is the same as if the sender waited for the reply to each call
before making the next.

New linguistic mechanisms are needed to make full use of
streams. For example, suppose

a := p(x)
b := q(y)

are two calls on the same stream, and what is wanted is to begin the
call of q without waiting for the reply to p. How can this be indicated?
How can the results of the two calls be picked up without error or
confusion? What happens if one of the calls signals an exception?
Finally, suppose a communication problem makes it impossible to
complete one of the calls; how is this indicated? Promises were
invented to answer these questions in a way that preserves the
merits of organizing programs using procedures and procedure calls
without sacrificing the performance benefits of streams.

The design of promises was influenced by the future mechanism
of MultiLisp 151. Like futures, promises allow the result of a call to be
picked up later. However, promises extend futures in several ways:
Promises are strongly typed and thus avoid the need for runtime
checking to distinguish them from ordinary values. They allow
exceptions from the called procedure to be propagated in a
convenient manner. Finally, they are integrated with the call-stream
mechanism and address problems such as node failures and
network partitions that do not arise in a single-machine environment.

Having introduced call-streams into a language, a natural next
concern is stream composition. We would like to arrange streams
into a pipeline in which the results of calls on one stream are used as
the inputs of calls on the next stream. The main concern here is how
to do the composition while retaining the performance benefits of the
component streams. We investigate some linguistic mechanisms
that support such compositions.

The remainder of this paper is organized as follows. In Section 2
we give a brief description of call-streams and describe how streams
will be integrated into the Argus programming language, which is the
context for our work on promises, Then in Section 3 we define
promises and describe how they can be used for making calls over
streams. We also discuss how promises can be used with forks of
local processes and compare our mechanism to related ones in
other languages. In Section 4 we deal with stream composition. We
conclude with an evaluation of our mechanism.

260

2. Call-Streams
Call-streams are a language-independent communication

mechanism. This section gives an overview of streams; a more
complete description can be found in [14]. We also discuss briefly
how streams are embedded into Argus.

We view a distributed program as made up of active en?ifies that
reside at different nodes of a network. Each entity resides
completely at a single node; there may be several entities at a node.
Two entities, a sender and a receiver, can be connected by a
stream. The sender can make calls to the receiver over the stream.
There are ordinary FfPCs, in which the sender receives the reply to
the call before making another call, and stream calls, in which the
sender may make more calls before receiving the reply. In addition
there are sends, which are like stream calls except that the sender is
interested in the reply Only when the Call terminates abnormally. The
underlying system takes care of delivering calls to the receiver in call
order, and delivering replies to the sender in call order. The
application code at the receiver is responsible for executing the calls
so that they appear to happen in call order.

There are two reasons for using stream calls instead of RPCs:
they allow the caller to run in parallel with the sending and
processing of the call, and they reduce the cost of transmitting the
call and reply messages. RPCs and their replies are sent over the
network immediately, to minimize the delay for a call. Stream calls
and their replies, however, are buffered and sent when convenient;
in the case of sends, normal replies can be omitted. Buffering allows
us to amortize the overhead of kernel calls and the transmission
delays for messages over several calls, especially for small calls and
replies.

A receiving entity provides one or more ports; these identify
procedures that can be called from other entities. Each port has a
unique name that can be used by the system to locate it when it is
called. Typically, a receiving entity will provide many ports, each one
corresponding to an operation that can be called by a client. Some
ports are created when the entity first comes into existence; others
can be created dynamically. Ports may be sent as arguments and
results of remote calls.

A port is strongly typed. For example,

port (int) returns (real) signals (el(char), e2)

describes a port that takes an integer argument. We are using the
termination model of exception handling (111, in which a call can
terminate in one of a number of conditions; in each case, results can
be returned to the caller. Thus a call on the above port might
terminate normally, returning a real, or it might terminate with
exception el or 62; it returns a character if it terminates with el and
returns nothing if it terminates with e2. Arguments and results are
passed by value as discussed further below.

Ports are grouped together for sequencing purposes: only calls to
ports in the same group are sequenced. Groups of ports define the
receiving ends of streams. We require that ports in the same group
all belong to the same entity because otherwise it would be
expensive to control the sequencing of calls to them. Typically an
entity determines the grouping of its ports when it creates them.

For example, a window system might provide a create-window
port that is used to create a new window. When called, this port
returns a number of newly-created ports that can be used to interact
with the new window, e.g.,

create-window: port (...) returns (window)
window = struct [putt: port (char),

putl: port (string),
change-color: port (string),
. . . I

All ports for a particular window might be placed in the same group,
but ports of different windows might belong to different groups.

We assume that there may be concurrent activity within an entity.
The separate activifes should not share the same stream because
this can introduce unwanted synchronization and even lead to
deadlocks. We use agents to identify activities; agents define the
sending ends of streams. An agent has a unique name and belongs
to a single entity; there can be many agents belonging to the same
entity.

An agent and a port group together define a stream: All calls sent
by an agent to ports in a port group are sent on the same stream,
and thus are sequenced. Calls made by different agents to ports in
the same group are sent on different streams, as are calls made by
one agent to ports in different groups.

Streams guarantee that messages arrive in good condition. They
also guarantee exactly-once, ordered delivery of requests: Each call
request or reply is delivered to the user code exactly once, the
request for call n + 1 is delivered to the user code at the receiver only
after the request for call n has been delivered to it, and the reply to
call n + 1 is delivered to the user code at the sender only after the
reply to call n has been delivered to it. Of course these semantics
cannot be realized completely because of problems such as node
crashes and network partitions. If the system is unable to live up to
the guarantees, it breaks the stream. It does so only if the sender or
receiver crashes, or there are serious communication problems. The
system tries hard to deliver messages before breaking a stream, so
there is no point in the caller repeating a calf immediately when a
stream breaks.

When the system at the receiving side breaks a stream, this
means that further calls on that stream will be discarded at the
receiver. Eventually, the system at the sender will also break the
stream, either independently, or because communication from the
receiver informs it of the break. When the system at the sending
side breaks a stream, this means that any calls whose replies have
not yet been received will never have replies. We rely on the
language in which the calls were made to do something sensible,
e.g., cause the calls to terminate with an exception.

A break at the receiver is either synchronous or asynchronous. A
synchronous break happens after the reply to a call; that call and all
calls before it will be unaffected by the break, but later calls will never
receive replies. An asynchronous break happens independently of
particular calls, and its effect on the outcome of already-processed
calls is nondeterministic. Asynchronous breaks happen when there
are communication problems, so replies to earlier calls may have
been lost.

The sender can make a broken stream usable again by resfarting
it. A restart is equivalent to a break done by the system at the
sender at that moment, followed by the reincarnation of the stream
so that calls can be made on it in the future.

Two additional primitives are available to the sender. The first is a
flush, which causes the sending of any buffered call requests on the
flushed stream and the flushing back of replies at the other side.
(Even without the flush, the system will send these messages
eventually; the flush merely speeds this up.) The second is a synch.
Synching not only does a flush, but it causes the caller to wait until
all earlier calls on the stream have completed.

2.1. Argus
To use streams within a programming language, we need to

identify the language features that correspond to entities, ports, and
so on. In this section we explain briefly how this is done for Argus,
The identifications introduced here serve as a basis for the
remainder of this paper. The reader is referred to [12, 15, 161 for a
complete description of Argus.

Argus provides active entities called guardians, each of which
resides entirely at a single node of a network. Each guardian
provides operations called handlers that can be called by other
guardians. In creating a handler, the guardian defines two things: a

261

port that can be used to identify the handler in calls, and a procedure
that will run when a call arrives to process it. This procedure is
called automatically by the Argus system when it is time to process a
call. Ports are grouped by various simple mechanisms, e.g., all ports
of handlers created when a guardian is created belong to the same
group.

A guardian can have many processes running inside it. Some of
these are created when a guardian first starts to run;’ others are
created to run handler calls. Each such process will be associated
with a unique agent.

When a handler call arrives at a guardian, the Argus system will
delay its execution until all earlier calls on its stream have completed.
(Calls on broken streams are discarded automatically, so user code
never needs to deal with them.) In this way we make it easy for user
code to ensure that calls on the same stream happen in order. (We
may provide some explicit overrides to allow more sophisticated
programs that process calls on the same stream in parallel.) Note,
however, that calls on different streams can be processed in parallel.

For example, consider a mailer guardian with handlers send-mail
and read mail, both in the same group, and suppose it is being used
by two &nts, Cl and C2. If Cl calls send mail, this call will start to
run immediately. If C2 then calls read-ma7 this call will also start to
run immediately, since it is on a different stream than Cl 3 call. Thus
both calls may be running concunently; each would be run by a
different process and agent. If Cl now calls read-mail on the same
stream as its call of send-mail, the processing of this call wilt wait
until Cl’s send-mail call completes; the call can then start running,
even though C2’s call of read-mail may still be running.

Argus already supports RPCs. For example, C2 can make an
RPC to the read-mail handler of the mailer guardian g by executing
the statement

m: message := g.read-mail(u)
except when no-such-user: .

when others:
end

where readTmai/ signals no-such-user if u is not registered with the
system. This call delays the calling process until the reply arrives, or
until the system determines that the call cannot be completed. The
Argus system terminates the call with the unavailable exception if
communication is impossible at the moment, and with the failure
exception if the call is an error, e.g., if guardian g no longer exists.

The example illustrates the Argus exception handling mechanism
[ll]. If a call terminates with an exception, control goes to the

nearest except statement that contains an arm for the exception; an
others arm handles all exceptions not named explicitly (unavailable
and failure in the example). The except statement can be attached
to the call statement as shown, or to any textually including
statement

One point ignored in the above discussion is that Argus
computations run as atomic transactions. Atomic transactions allow
us to make sense of the above concurrency, e.g., if the calls made
by Cl and C2 send and read mail for the same user. They also
allow us to make sense of computations in the presence of failures
such as node crashes and lost messages. We will discuss
transactions briefly later in the paper.

3. Promises
We concentrate now on how to support stream calls. Our solution

is intuitive and straightforward. When a stream call is performed, the
caller receives a “promise” for a result that will arrive later. A
promise is an object that can be used to “claim” the result when it is
ready. The type of the promise object reflects the possible results of

‘or recovers from a crash. Guardians can survive crashes as discussed further
in [l S].

the call, i.e., the type of the result in the normal case, and the names
and types of the possible exceptions.

Associated with each handler type is a related promise type. For
example, for

ht = handlertype (int) returns (real) signals (foo)

the related promise type is

pt = promise returns (real) signals (foo)

A promise type has a results part, listing the type or types of objects
returned by the handler call in the normal case, and an exceptions
part, listing the exceptions of the handler.

A promise object is in one of two states: blocked or ready. When
first created as part of making a stream call, a promise is in the
blocked state. When the call completes, the promise switches to the
ready state. In this state, it has a value that indicates the outcome of
the call, i.e., whether the call completed normally or with an
exception, and the corresponding result in each case. Once a
promise is ready it remains ready from then on and its value never
changes again.

The c/aim operation waits until the promise is ready. Then it
returns normally if the call terminated normally, and otherwise it
signals the appropriate exception, e.g.,

y: real := pt$claim(x)
except when foo: . . .

when unavailable(s: string): .
when failure(s: string): . .

end

Here x is a promise object of type pt; the form pi$claim illustrates the
way Argus identifies an operation of a type by concatenating the type
name with the operation name. A promise can be claimed multiple
times; the same outcome will occur each time. There is also a ready
operation, which returns true if the promise is ready and false if it is
blocked.

Broken streams are mapped into exceptions and then restarted
automatically. As mentioned earlier, when there are communication
problems, RPCs in Argus terminate either with the unavailable
exception or the failure exception. Unavailable means that the
problem is temporary, e.g., communication is impossible right now.
It also means, however, that the system has tried hard so that there
is no point in the user retrying the call right away. Failore means that
the problem is permanent, e.g., the handler’s guardian does not
exist. Thus stream calls (and sends) whose replies are lost because
of broken streams will terminate with one of these exceptions. Both
exceptions have a string argument that explains the reason for the
failure, e.g., f&/ure(“handler does not exist”), or unavailab/e(“cannot
communicate”). Since any call can fail, every handler can raise the
exceptions failure and unavailable. We do not bother to list these
exceptions explicitly. Thus ht and pf both have three exceptions, foe,
unavailable and failure.

Arguments and results of handler calls in Argus are passed by
value [7j. Only certain types of objects are permitted; for example,
promises are not legal as arguments or results. Since the caller and
the called module may have different representations for the data
being communicated, the data are actually sent using an external
representation. When a call is made, each argument is encoded by
translating from its representation at the caller to the external
representation; when the call message arrives at the receiver, the
arguments are decoded by translating frqm the external
representation to the internal one. Similarly, results are encoded at
the receiver and decoded at the sender. Either encoding or
decoding may fail. For example, when an argument or result is an
object belonging to some abstract type, encoding and decoding are
done by user-provided code, which may contain errors. Such a
failure causes the call to terminate with the failure exception. In
addition, when the problem happens at the receiver, the stream
breaks so that further calls on that stream will be discarded.

262

A stream call has the form

x: pt := stream h(3)

where h is a handler of type hf. The semantics is as follows:
1. The call message is produced by encoding the

arguments. If encoding fails, or if the stream being
used is already broken, the call fails and signals the
appropriate (failure or unavailable) exception. In this
case no promise object is created, and control
continues at the appropriate except statement.

2. If the call message is produced successfully, a promise
object is created in the blocked state and returned to
the caller, allowing the caller to continue.

3. Later, when the reply has arrived and it is convenient
for the system to decode it, and after all promises for
earlier calls on the stream are in the ready state, the
reply message is decoded and the promise is changed
to the ready state with the appropriate value. This
value will be the (normal or exceptional) result returned
by the call unless decoding failed, in which case the
value will be fai/ure(“could not decode”). Decoding
happens in a process and agent belonging to the
system.

% define some type abbreviations
sinfo = record [stu: string, grade: grade]
info = array [sinfo]
pt = promise returns (real)
averages = array [pt]

grades: info := % this information is pre-recorded and
% organized alphabetically by student

begin
a: averages := averages$create(info$low(grades)) % create new,

% empty array with the same lower bound as the grades array

% record grades
for s: sinfo in info$elements(grades) do

averages$addh(a, stream recordgrade (sstu, sgrade))
end

flush recordgrade

% print
for i: int in averages$indexes(a) do

stream print(make-string(grades(i].stu, pt$claim(a[i])))
end

synch print
end except . . . end

4. Alternatively, before the promise changes to the ready
state, its stream may break or be restarted. In this
case, the system changes the promise to the ready
state with an appropriate value, e.g.,
unavailable(“could not communicate”).

Hgure 3-1: The Grades Example

the elements of the array from the low bound to the high bound. The
elements are produced incrementally; each time an element is
produced, the loop body is run with that element stored in variable x.
The loop uses the array addh operation, which extends the array a
by one and stores the new promise in the new element. When the
loop is finished, the program flushes the call-stream to ensure that
the last few calls (and replies) are sent out quickly.

If desired, the program need not create a promise: this is indicated
by using stream as a statement instead of an expression, In such a
situation, the result of the call is still decoded as described above
and then discarded. Sends do not show up explicitly in Argus.
Instead whenever a stream call is made to a handler with no normal
results, the Argus implementation makes the call as a send.

Claims can be done in any convenient order. We do not require
that the result of the ith message be claimed before the result of the i
+ 1 St. As noted above, however, if the i + 1 st result is ready, then so
is the ith.

In addition to making calls, Argus programs can flush and synch
streams. The flush or synch is done on a handler, e.g.,

synch h

The stream is the same one that would have been chosen in a
stream call to that handler. In addition to doing a synch on the
stream, synch allows the program to find out about whether earlier
stream calls terminated normally or not. Synch returns normally
only if all previous stream calls (since the last synch or regular RPC
on the stream or since the stream incarnation was created) returned
normally; otherwise, it signals exception-reply. It does not return
information about which calls raised exceptions; to discover this, the
program must use promises.

3.1. Example
As an example, consider a guardian that stores information about

the grades of students and provides a handler, recordgrade, that
records a new grade for a student and returns an updated average
for that student. In addition, a second guardian provides printing of
grades information via its print operation. The program in Figure 3-l
uses one stream to record new grades for students and get their new
averages, and a second stream to print an alphabetical list of
students with their averages.

The first four lines of this program simply define abbreviations for
data types used in the rest of the program. The first loop streams
the calls of record-grade to the grades database, and stores the
promises for the averages returned by these calls in array a. It uses
the array operation elements to obtain the grades information for
students in alphabetical order; elements is an iterator [lo] that yields

The second loop claims the promises in the order they were
generated (namely alphabetically by student name) and makes
stream calls to the printer. It uses the indexes iterator. which
produces the legal indices in the array. Since the averages are
maintained in alphabetical order in array a, the results will be printed
in order. Furthermore, the averages will be paired with the proper
students because the elements in the two arrays, a and grades, are
paired.

This example uses stream calls both to overlap processing of calls
and to obtain the benefits of buffering messages for calls and replies.
A considerable amount of overlapping is possible, since once all
calls of record-grade have been initiated and the replies start to
come back, the processing of calls at the grades database can be
overlapped with the processing of the print requests. In addition, the
example uses promises as a way of organizing replies in a
convenient manner (e.g., in an order corresponding to the
alphabetical ordering of the students), and it relies on the guarantee
of streams that calls and replies are delivered in call order.

However, the example does not have as much overlapping as we
would like. We cannot begin printing results until all calls to the
grades database have been initiated. A better program would start
printing as soon as averages can be claimed. We discuss such a
program in Section 4.

3.2. Local Forks
Promises and stream calls allow a client to run in parallel with cells

to a server, and pick up the replies in a convenient way. However,
there are two parts to our semantics: the deferred result, which
allows concurrency between caller and callee, and the ordered
processing of the calls. It is dear that concurrency would be useful
without the ordering. Therefore, in this section we extend our
mechanism to include “forking” of local calls. In addition to creating
promises by means of stream calls, we also allow them to be made
by means of forks. A fork causes a call of a local procedure to run in

263

parallel with the caller. When the procedure terminates, its results
are stored in the promise, which then becomes claimable.

The semantics of forking is as follows. Suppose foe is a local
procedure,

loo: proc (a: array[int]) returns (int) signals (e)

and pt is the associated promise type

pt = promise returns (int) signals (e)

Then the statement

p: pt := fork foe(a)

where a is an array of integers leads to the following:

1. A new prctcess (and agent) is created to run the call
and the forked procedure is called within that process.
The arguments are passed by sharing as discussed
below; encoding or any kind of copying is not needed.

2. A promise is created in the blocked state and returned
to the calling process, which then continues running.
At this point both the caller and the called process are
running in parallel.

3. When the called procedure terminates, the promise
changes to the ready state with the result of the
procedure as its value.

There are no lifetime problems caused by fork. Argus procedures
can share objects but not variables; they have no free variables and
Argus does not support call-by-reference. Objects reside in a heap
rather than a stack and continue to exist until they are no longer
referenced. Arguments (and results) are passed by sharing: a
pointer to the argument object (in the heap) is passed to the called
procedure.

Forked promises are a useful concurrency mechanism in certain
kinds of programs. One place where this occurs is in construction
and access of recursive data structures such as lists and trees. For
example, promises can be used for parallel insertion and searching
of elements in a binary tree in which the nodes of the tree are
promises. If a search reaches a node that cannot be claimed yet, it
waits until the promise is ready.

3.3. Discussion
In the preceding subsections we described the Argus promise

mechanism and showed how promises integrate streams and local
forked procedures. Using promises for asynchronous remote Calls is
entirely new, However, many languages have local concurrency of
the “fork” variety. Our mechanism has advantages over others
because it is both type safe and provides a convenient way for
exceptions to be propagated from the forked process to other
processes that need to know what happened. While some other
languages provide type-safe mechanisms, e.g., Mesa [17] and
Modula-2+ [la], none to our knowledge provides exception
propagation.

As discussed earlier, the futures of MultiLisp [6] were an important
influence on our work. In MultiLisp, an object of any type can be a
future for a value that will arrive later. When the value is needed in a
computation (e.g., for an addition), it is claimed automatically, and
the claiming program waits if necessary.

The uniformity of treating all objects as futures can be Convenient.
However, futures have two disadvantages. First, they are inefficient
to implement unless specialized hardware is available, since every
object must be examined each time it is accessed to determine
whether or not it is a future. Second, it is difficult to do anything very
useful with exceptions. In MultiLisp, exceptions are turned into error
values automatically, and information about the error value
propagates through the expression that caused the future to be
claimed and then through surrounding expressions. Such an
approach makes it difficult for a program to determine the reason for
the error value. This problem is discussed in [S], which proposes as
a solution that programs should claim futures explicitly if necessary

to ensure that the error value is discovered in a scope that knows
what to do with it. Promises force all programs to be structured like
this, so the structure of the program using promises will be identical
to one using futures when safe exception handling is a concern.

4. Composing Streams
One kind of program structure that is likely to arise with stream

calls is the cascading of results of calls on one stream to the inputs
of calls on another stream. We can think of a cascade as composing
a number of streams together. A composition can have an arbitrary
number of levels; in each case, the output of the ith stream becomes
the input of the i + 1 st stream, possibly with some local computation
done along the way.

The grades example illustrates a two-level composition, with the
results of the first stream (to the database) being sent on to the
second stream (to the printer). However, as mentioned above, the
program shown in Figure 3-l does not do what we want since it
delays streaming to the printer until all calls to the database have
been started. Instead, we would like to stream the results from the
database to the printer as they become ready, even if some Calls to
the database have not yet been made. Obviously, this overlapping
of recording and printing becomes more important as the number of
calls increases.

A further overlapping problem becomes apparent when there are
more levels in the cascade. For example, suppose there are three
handlers

read = handler () returns (argtypel) signals (el, e2)
compute = handler (argtypel) returns (argtype2) signals (e3)
write = handler (argtype2) signals (e4)

each connected to a different stream. The idea is to pipeline the
requests for data from the read stream into the compute stream and
then to pipeline the results of compute into the write stream.
However, if we use a program like that in Figure 3-1, then

1. All calls to read must start before any calls to compute
can be made.

2. All results from read must be claimed, and all calls to
compute must be started, before any calls to wrife can
be made.

In this section we discuss how to write programs that exhibit the
desired kind of data flow. One thing to note, however, is that we are
not interested in connecting the output of one stream directly to the
input of another, e.g., as is done in pipes in Unix. Instead, we want
results to return to the original caller who then sends them on to the
next stream. This program form allows arbitrary filter computations
to be done to “match” the two streams. For example, the result of a
call to record-grade is only one of several inputs of a call to the
printer. Another example concerns exceptions: if a call on the first
stream signals an exception, the program might compensate for this
either by manufacturing arguments for the call on the next stream or
by omitting the call or by terminating the computation.

A good way to get the composition we desire is to introduce
concurrency into the controlling program,’ and run each loop (e.g., in
the grades example) in a separate process. The first loop makes
stream calls to record_grade and fills up a data structure with
promises; the second loop consumes these promises and makes the
stream calls to the printer. Since the loops are running concurrently,
the first one need not run to completion before the second one starts
and thus we obtain the desired overlapping.

*A bad way is to write a sequetiial program that explicitly mukiilexes the use of the
different streams.

264

4.1. Forks
Forks are a general concurrency mechanism, so they can be used

to implement the concurrent loops program structure as shown in
Figure 4-1. However, the resulting program is less than ideal, as
discussed further below.

The first part of the figure defines two procedures, one to do the
first iteration, and the other to do the second. The main program
simply forks two processes, one running each of these procedures.
The processes communicate by means of a shared queue of
promises, aveq, the process that records grades stores the promises
created for its stream calls into the queue, and the printing process
gets the promises from the queue. The queue serves a similar
function to the array of averages in Figure 3-1, but in addition it also
synchronizes the two processes: when a process attempts to deq an
element from the queue, it will wait if the queue is empty until an
element is enqueued. Queues can be implemented using standard
synchronization mechanisms such as semaphores [3] or
monitors [a].

The two local forks have associated promises so that the main
program can wait until the two processes are done and so that any
exceptions raised can be handled in the main program. Note that
each procedure does a synch on its stream before it returns;
therefore, if it returns normally, this means all calls it made
completed successfully. (Of course, doing things right when only
some of the grades have been recorded requires more sophistication
than is shown in this program. Argus provides this ability by allowing
computations to run as atomic transactions, as discussed further in
the next section.)

As mentioned above, the program is less than ideal: it is
awkward, and it has a termination problem. It is awkward to have to
define the procedures use-db and dosrint it would be more
convenient to write the code of the procedures right where they are
used. Having to create and claim promises when there are no
normal results is also awkward. The termination problem arises if
the recording process terminates early because of a communication
problem; in this case the printing process may hang forever waiting
to dequeue the next promise from the queue.

The termination problem will arise in every stream composition; in
each case, we will need the ability to treat the processes as a group
and to allow a process in the group to cause the termination of the
other processes in the group. Furthermore, programming proper
termination explicitly can be quite tricky. Therefore, rather then fixing
this program, we instead go on in the next section to define a
different linguistic mechanism that overcomes both difficulties.

4.2. Coenters
What we would like is a way to identity the set of processes that

implement a stream composition, so that they can be terminated
properly when problems arise. In addition, it would be convenient to
write the forked code inline. Argus already provides a mechanism
that provides these abilities, the coenter statement. The coenter
statement is similar to mechanisms in other languages (e.g.,
CSP [9]); it differs from these other mechanisms primarily because it
offers a complete and sensible treatment of exceptions and early
termination.

An example of the coenter is shown in Figure 4-2. A coenter
statement contains a number of arms, each defining a computation
to be run as a process. Execution of a coenter occurs as follows: A
process and agent are created to run each arm, and these
processes start to run in some undefined order; we will refer to these
newly created processes as subprocesses. The process executing
the coenter is halted, and remains halted until all the subprocesses
complete. Completion can happen in one of two ways. First, each
subprocess may simply finish execution of its arm. In addition,
however, a subprocess can cause other subprocesses to terminate
early. It does this by causing a control transfer outside of the
coenter. In this case, any remaining subprocesses that are not yet
finished are forced to terminate (as discussed further below) before
the “parent” process can continue.

pt = promise returns (real)
pi1 = promise signals (cannot-record)
pt2 = promise signals (cannotprint)

use-db = proc (grades: sinfo, aveq: queue[pt]) signals
(cannot-record)

for s: sinfo in sinfo$elements(grades) do
queue[pt]$enq(aveq, stream recordgrade (s.stu, s.grade))
end except when others: signal cannot-record end

synch recordgrade
except when others: signal cannot-record end

end use-db

dogrint = proc (grades: sinfo, aveq: queue[pt])
signals (cannotgrint)

for i: int in sinfo$indexes(grades) do
ave: pt := queue[pt]$deq(aveq)
stream print(make-string(grades[i].stu, pt$claim(ave)))
end except when others: signal cannotgrint end

synch print except when others: signal cannotprint end
end dogrint

% composing the streams

aveq: queue[pt] := queue[pt]$create()
pl: ptl := fork use-db (grades, aveq)
p2: pt2 := fork dogrint (grades, aveq)
ptl $claim(pl) except when cannot-record: . end
pQ$claim(p2) except when cannotgrint: end

Figure 4-1: Using Forks

pt = promise returns (real)
aveq: queue[pt] := queue(pt]$create()
coenter

actlon % recording grades
for s: sinfo in sinfo$elements(grades) do

queue[pt]$enq(aveq, stream recordgrade (sstu, sgrade))
end

synch recordgrade

action % printing
for i: int in sinfo$indexes(grades) do

ave: pt := queue[pt]$deq(aveq)
stream print(make-string(grades[i].stu, pt$claim(ave)))
end

synch print

end % coenter
except when others: % in this case some work did not finish

Figure 4-2: Using Coenters

The figure implements the grades example using the coenter.
Recording of grades is done in one arm; printing is done in the other.
Each arm is run as an action, as discussed further below. If any
stream problems are encountered in either arm, this will cause early
termination of the coenter because these exceptions are not
handled in the arms, but instead go to the except statement
following the coenter. When such an exception is raised, the other
arm (the one that did not cause the exception) is also terminated
before the except statement is executed. For example, if the stream
to the grades database breaks and this is discovered in the.recording
process because the next stream call raises an exception, then both
the recording process and the printing process will be terminated
immediately and control will continue in the parent process at the
except statement. As mentioned earlier, without forced termination,
the printing process might hang forever waiting to dequeue the next
item from the queue.

265

Early termination of processes raises a question of safety. First,
the process might be in the middle of a critical section; stopping it at
such a point could leave damaged data. For example, if the printing
process were terminated in the middle of dequeuing, this could leave
the aveq in a damaged state. We solve this problem by delaying
termination while a process is in a critical section. The Argus
runtime system keeps track of how many critical sections a process
is in and delays its termination until the count is zero; the system can
do this because Argus provides a built-in critical section mechanism.
To encourage a process to leave critical sections rapidly when it
should terminate, we “wound” it by greatly restricting what it can do.
For example, it cannot make any remote calls at such a point.3

Even if we solve the safety problem at this level, however, it recurs
at a higher level. For example, recording grades is not something
that should be done pati way. This level of safety is provided in
Argus by means of atomic transactions. An atomic transaction either
completes entirely or is guaranteed to have no effect. Thus, running
the recording process as an atomic transaction can ensure that if it is
not possible to record all grades, none will be recorded. In the
example, both processes are running as transactions.

When an action is terminated, we do not wait to terminate any
calls that may be running elsewhere. Instead. the Argus system
guarantees that it will find these computations and destroy them
later [13]. Thus, for example, if the recording action terminates the
coenter, we can do the termination immediately without waiting for
calls to the grades database or the printer to complete.

Complete discussion of atomic&y is beyond the scope of this
paper; a full treatment of transactions, including integration into the
coellter, can be found in [16]. Atomicity can also be used in the
program in Figure 4-l ; it is not limited to the coenter.4 However, as
mentioned earlier, the program with forks would have to indicate
somehow what actions to abort in the case of a problem; wtth the
coenter, this information is available from the program structure.

A coenter is the appropriate mechanism to use when the
processes have no results and when the control structure is naturally
hierarchical, i.e., it makes sense to delay the parent until the children
are finished. When these conditions are not satisfied, a fork will be
a better mechanism. Note that with hierarchical control there is no
variable lifetime problem.

4.3. Discussion
The preceding sections discussed two ways to program stream

composition: with forks and with the coenter. For stream
composition, the coenter mechanism is preferable because it allows
us to indicate directly what processes are involved in the
composition, which in turns allows those processes to be terminated
as a group if a problem arises. A secondary advantage of the
coenter is that the code of the processes can be written in line.

In our discussion of composition, we assumed that there was one
module that made the calls and ran the filters. (Recall that filters
match resutts of one call to arguments of the next call.) It would be
more efficient to send the filters along with the calls. This would
allow a structure more like a real pipeline: results of calls on the first
stream would be sent directly in calls on the second stream, and so
on, without the need to first send the replies back to the original
caller. However, such a structure is not practical in a heterogeneous
system, since different programming languages may be in use at the

?f a wounded process does not terminate quiokly enough, we simply crash Rs
guardian. Each Argus guardian is written to suwive crashes. More details can be
found in [15].

*Atomicky cannd prevent partial results from ekternal activities like printing. If a
failure prevents an external activity from finishing, there will always be uncertainty as
to whether it happened or not. An example of where this wouM be a problem is when
a cash vending machine dispenses money. The best that can be dons is to rsducx
tJw uncertainty to a very small duration so that the probability of a failure happening in
that time is very small.

ends of the streams. Sending filters makes more sense in a
homogeneous system, but even here it raises difficult issues about
how to implement the sending of code in messages.

The programs discussed above were organized around the
streams, i.e., each process was in charge of making calls on a Single
stream. Another way to look at the problem is in terms of what
happens to an individual data item, e.g., a grade is first recorded and
then printed. With this structure, there would be a Process Per item.
Each process would move its item from one stream to another, thus
using atI the streams of the cascade; synchronization would be
needed to ensure that the calls on each stream were made in order.
To implement such a structure, we need a way of spawning a
dynamically determined number of processes. Although the
concurrency can be obtained by forks, this leads to the same group
termination problem discussed above. Instead a mechanism with
automatic grouping is preferable. Argus provides such a
mechanism, which extends the coenter to allow a dynamic number
of processes.

Providing concurrency per data item is both an advantage and a
problem. The advantage is that the extra concurrency may be useful
since it permits us to run the filters in parallel. Clearly, this is of
interest only if the filters are lengthy, and only on a multiprocessor.
The problem is that there are many more processes to manage than
in the process-per-stream case. This can impose a substantial
burden on the system, and even slow down the program. Although a
good system implementation might be able to do a reasonable job,
the process-per-stream structure avoids the whole problem and
therefore is better, at least on a sequential machine.

Instead of using coenters or forks, another possibility is to provide
a construct that supports composition directly. Such a structure
could lead both to simpler programs and better performance.
However, it is not clear that stream composition is important enough
to justify its own linguistic mechanism. At present, we believe that
the coenter form is adequate for our needs.

5. Conclusions
Streams were invented to improve the performance of distributed

programs. In our system we are interested in a very general class of
applications written in a wide variety of languages. Our approach is
to allow programs to be connected in a flexible and efficient way with
streams. At the same time, however, streams support high-level
interfaces, each consisting of a set of procedures that clients can
call. Even though a client may have several calls to a sewer in
progress simultaneously, the meaning of the calls is the same as if
they were made one at a time.

Streams make no statement about what linguistic mechanisms
should be used to interact with them. However, in adding streams to
a programming language, it is important not to undermine their
performance goals. In addition, it is desirable that the use of streams
continue to follow the procedure call model. Our main contribution
has been the provision of a mechanism that retains the benefits of
procedural interaction without sacrificing performance. Reasoning
about the correctness of a program that uses promises to make calls
on a single stream is no different from reasoning about the same
program using traditional APC. Such reasoning is considerably less
complex than reasoning about general message passing.

Most languages for distributed systems provide a procedure-
oriented communication mechanism. Examples are Ada [19] and
SR [l]. The advantages of this approach are well known: it allows
simpler programs to be written that are easier to reason about.
However, none of these languages allows the efficiency of
streaming. Programs in these languages can be optimized only to
reduce the delay of individual calls, not to improve the throughput of
groups of calls.

The deficiency of remote calls for high throughput is also well
known, and some languages, such as Plits [4] and ‘MOD (21, have
attempted to solve this problem by providing explicit send and
receive primitives. Here the sender need wait only until the message

266

is produced. Later the outcome of the processing that happens in
response to the message is sent to the original caller in a separate
message that the caller receives. The send/receive approach can
allow programs to achieve high throughput, but it leads to complex
and ill-structured programs. The difficulty is that to obtain the
efficiency benefits of streaming, it is necessary to have many “calls”
in progress at a time, and it is entirely the responsibility of the user
code to relate reply messages with the calls that caused them.
Promises and streams, however, retain high throughput without
imposing this burden.

Note that promises and streams provide almost the full flexibility of
send/receive. Send/receive does not require pairing of messages,
but as a practical matter pairing is always needed, because
ultimately the caller needs to find out what happened. Sometimes,
pairing of send/receive takes the form of one reply for many calls; we
can accomplish this with sends. Sometimes, however, the reply
comes from a third party, a mechanism we do not support.

We also considered the use of promises with forks. Promises for
streams have three properties: concurrency of caller and callee,
caller control of claiming and putting promises in data structures, and
ordering of the processing of a sequence of calls on a stream.
Promises for forks have only the first two properties, but are
nevertheless very useful. In particular, the ability to propagate
exceptions from the forked process to some other process in a
convenient manner is extremely useful, and represents a solution to
a problem that has been a concern to language designers in this
area.

Introduction of streams naturally leads to the problem of how to
compose them. A composition allows cascading of information from
one stream to the next. Concurrency is a natural way to do stream
composition, since we want to start calls on the nth stream in parallel
with calls on the n - lSt stream. We investigated what programs that
compose streams are like, and what linguistic mechanisms are
useful to support this composition.

We conclude that promises are a good way of supporting efficient,
asynchronous remote procedure calls in a programming language.
The extension to forks allows remote and local concurrency to be
provided in a uniform way. Although forks can permit composition of
streams, better structured programs result from a mechanism like the
coenter, which also handles process termination properly.

Acknowledgments

We want to thank Bert Halstead and Bob Scheifler for preliminary
discussions that led to the idea of promises, and Dorothy Curtis,
Sanjay Ghemawat, Bob Gruber, Paul Johnson, Elliot Kolodner, Juan
Loaiza, Sharon Perf, and Bill Weihl for help in developing the
mechanism.

References

1. Andrews, G. Ft. “Synchronizing Resources”. ACM Trans. on
Programming Languages and Sysfems 3,4 (October 198 1) ,
405-430.

2. Cook, Ft. P. “‘MOD -- A language for distributed programming”.
LEE E Trans. on Software Engineering SE-6 (November 1980).

3. Dijkstra, E. W. “The structure of the ‘THE’-multiprogramming
system”. Comm. of the ACM 11, 5 (May 1968) 341-346.

4. Feldman, J. A. “High level programming for distributed
computing”. Comm. of the ACM 22, 6 (June 1979) 353-368.

5. Halstead, R. “Multilisp: A language for concurrent symbolic
computation”. ACM Trans. on Programming Languages and
Systems 7, 4 (October 1985).

6. Halstead, R., and Loaiza. J. Exception Handling in Multilisp.
International Conference on Parallel Processing, IEEE, August,
1985, pp. 822-829.

7. Herlihy, M. P., and Liskov, B. “A value transmission method for
abstract data types”. ACM Trans. on Programming Languages and
Systems 4, 4 (October 1982) 527-551.

8. Hoare, C. A. R. “Monitors: an operating system structuring
concept”. Comm. of the ACM 77, 10 (October 1974) 549-557.

9. Hoare, C. A. R. “Communicating sequential processes”. Comm.
of the ACM 2 7, 8 (August 1978) 666-677.

10. Liskov, B., Snyder, A., Atkinson, R. R., and Schaffert, J. C.
“Abstraction mechanisms in CLU”. Comm. of fhe ACM 20,8 (August
1977) 564-576.

11. Liskov, B., and Snyder, A. “Exception handling in CLU”. /EfE
Trans. on Software Engineeting S/I-5,6 (November 1979) 546558.

12. Liskov, B., and Scheifler, R. W. “Guardians and actions:
linguistic support for robust, distributed programs”. ACM Trans. on
Programming Languages and Systems 5, 3 (July 1983) 381-404.

13. Liskov, B., Scheifler, R., Walker, E., and Weihl, W. Orphan
Detection. Proceedings of the 17th International Symposium on
Fault-Tolerant Computing, IEEE, Pittsburgh, Pa., July, 1987, pp. 2-7.
Extended version available as Programming Methodology Group
Memo 53, M.I.T. Laboratory for Computer Science, Cambridge, Ma..

14. Liskov, B., Bloom, T., Gifford, D., Scheifler, R., and Weihl, W.
Communication in the Mercury System. Programming Methodology
Group Memo 59;M.I.T. Laboratory for Computer Science,
Cambridge, Ma., 1987. Also in the Proceedings of the 21st Annual
Hawaii Conference on System Sciences, January 1988.

15. Liskov, B., et al. Argus Reference Manual. Technical Report
MITILCSITR-400, M.I.T. Laboratory for Computer Science,
Cambridge, Ma., 1987.

16. Liskov, B. “Distributed Programming in Argus”. Comm. of the
ACM 37, 3 (March 1988), 300-312.

17. Mitchell, J. G., Maybury, W., and Sweet, R. Mesa Language
Manual Version 5.0. Technical Report CSL-79-3, Xerox Research
Center, Palo Alto, Ca., 1979.

18. Rovner, P., Levin, R., and Wick, J. On Extending Modula-2 for
Building Large, Integrated Systems. 3, DEC System Research
Center, Palo Alto, Ca., January, 1985.

19. U. S. Department of Defense. Reference manual for the Ada
programming language. 1983. ANSI standard Ada.

267

