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Abstract 

This paper deals with the integration of an efficient asynchronous 
remote procedure call mechanism into a programming language. It 
describes a new data type called a promise that was designed to 
support asynchronous calls. Promises allow a caller to run in parallel 
with a call and to pick up the results of the call, including any 
exceptions it raises, in a convenient and type-safe manner. The 
paper also discusses efficient composition of sequences of 
asynchronous calls to different locations in a network. 

1. Introduction 
This paper describes a new data type called a promise. Promises 

were designed to support an efficient asynchronous remote 
procedure call mechanism for use by mmponents of a distributed 
program. A promise is a place holder for a value that will exist in the 
future. It is created at the time a call is made. The call computes the 
value of the promise, running in parallel with the program that made 
the call. When it completes, its results are stored in the promise and 
can then be “claimed” by the caller. 

The development of promises was motivated by a new 
communication mechanism, the call-stream. Call-streams were 
invented as part of a project in heterogeneous computing [14], in 
which programs written in different programming languages, and 
running under different operating systems on different hardware, can 
use one another as components over a network. Call-streams 
combine the advantages of remote procedure calls and message 
passing. Remote procedure calls have come to be the preferred 
method of communication in a distributed system because programs 
that use procedures are easier to understand and reason about than 
those that explicitly send and receive messages. However, remote 
calls require the caller to wait for a reply before continuing, and 
therefore can lead to lower performance than explicit message 
exchange. 
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Call-streams allow a sender to make a sequence of calls to a 
receiver without waiting for replies. The stream guarantees that the 
calls will be delivered to the receiver in the order they were made 
and that the replies from the receiver will be delivered to the sender 
in call order. Provided that the receiver executes the calls so that 
they appear to occur in call order, the effect of making a sequence of 
calb is the same as if the sender waited for the reply to each call 
before making the next. 

New linguistic mechanisms are needed to make full use of 
streams. For example, suppose 

a := p(x) 
b := q(y) 

are two calls on the same stream, and what is wanted is to begin the 
call of q without waiting for the reply to p. How can this be indicated? 
How can the results of the two calls be picked up without error or 
confusion? What happens if one of the calls signals an exception? 
Finally, suppose a communication problem makes it impossible to 
complete one of the calls; how is this indicated? Promises were 
invented to answer these questions in a way that preserves the 
merits of organizing programs using procedures and procedure calls 
without sacrificing the performance benefits of streams. 

The design of promises was influenced by the future mechanism 
of MultiLisp 151. Like futures, promises allow the result of a call to be 
picked up later. However, promises extend futures in several ways: 
Promises are strongly typed and thus avoid the need for runtime 
checking to distinguish them from ordinary values. They allow 
exceptions from the called procedure to be propagated in a 
convenient manner. Finally, they are integrated with the call-stream 
mechanism and address problems such as node failures and 
network partitions that do not arise in a single-machine environment. 

Having introduced call-streams into a language, a natural next 
concern is stream composition. We would like to arrange streams 
into a pipeline in which the results of calls on one stream are used as 
the inputs of calls on the next stream. The main concern here is how 
to do the composition while retaining the performance benefits of the 
component streams. We investigate some linguistic mechanisms 
that support such compositions. 

The remainder of this paper is organized as follows. In Section 2 
we give a brief description of call-streams and describe how streams 
will be integrated into the Argus programming language, which is the 
context for our work on promises, Then in Section 3 we define 
promises and describe how they can be used for making calls over 
streams. We also discuss how promises can be used with forks of 
local processes and compare our mechanism to related ones in 
other languages. In Section 4 we deal with stream composition. We 
conclude with an evaluation of our mechanism. 
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2. Call-Streams 
Call-streams are a language-independent communication 

mechanism. This section gives an overview of streams; a more 
complete description can be found in [14]. We also discuss briefly 
how streams are embedded into Argus. 

We view a distributed program as made up of active en?ifies that 
reside at different nodes of a network. Each entity resides 
completely at a single node; there may be several entities at a node. 
Two entities, a sender and a receiver, can be connected by a 
stream. The sender can make calls to the receiver over the stream. 
There are ordinary FfPCs, in which the sender receives the reply to 
the call before making another call, and stream calls, in which the 
sender may make more calls before receiving the reply. In addition 
there are sends, which are like stream calls except that the sender is 
interested in the reply Only when the Call terminates abnormally. The 
underlying system takes care of delivering calls to the receiver in call 
order, and delivering replies to the sender in call order. The 
application code at the receiver is responsible for executing the calls 
so that they appear to happen in call order. 

There are two reasons for using stream calls instead of RPCs: 
they allow the caller to run in parallel with the sending and 
processing of the call, and they reduce the cost of transmitting the 
call and reply messages. RPCs and their replies are sent over the 
network immediately, to minimize the delay for a call. Stream calls 
and their replies, however, are buffered and sent when convenient; 
in the case of sends, normal replies can be omitted. Buffering allows 
us to amortize the overhead of kernel calls and the transmission 
delays for messages over several calls, especially for small calls and 
replies. 

A receiving entity provides one or more ports; these identify 
procedures that can be called from other entities. Each port has a 
unique name that can be used by the system to locate it when it is 
called. Typically, a receiving entity will provide many ports, each one 
corresponding to an operation that can be called by a client. Some 
ports are created when the entity first comes into existence; others 
can be created dynamically. Ports may be sent as arguments and 
results of remote calls. 

A port is strongly typed. For example, 

port (int) returns (real) signals (el(char), e2) 

describes a port that takes an integer argument. We are using the 
termination model of exception handling (111, in which a call can 
terminate in one of a number of conditions; in each case, results can 
be returned to the caller. Thus a call on the above port might 
terminate normally, returning a real, or it might terminate with 
exception el or 62; it returns a character if it terminates with el and 
returns nothing if it terminates with e2. Arguments and results are 
passed by value as discussed further below. 

Ports are grouped together for sequencing purposes: only calls to 
ports in the same group are sequenced. Groups of ports define the 
receiving ends of streams. We require that ports in the same group 
all belong to the same entity because otherwise it would be 
expensive to control the sequencing of calls to them. Typically an 
entity determines the grouping of its ports when it creates them. 

For example, a window system might provide a create-window 
port that is used to create a new window. When called, this port 
returns a number of newly-created ports that can be used to interact 
with the new window, e.g., 

create-window: port (...) returns (window) 
window = struct [ putt: port (char), 

putl: port (string), 
change-color: port (string), 
. . . I 

All ports for a particular window might be placed in the same group, 
but ports of different windows might belong to different groups. 

We assume that there may be concurrent activity within an entity. 
The separate activifes should not share the same stream because 
this can introduce unwanted synchronization and even lead to 
deadlocks. We use agents to identify activities; agents define the 
sending ends of streams. An agent has a unique name and belongs 
to a single entity; there can be many agents belonging to the same 
entity. 

An agent and a port group together define a stream: All calls sent 
by an agent to ports in a port group are sent on the same stream, 
and thus are sequenced. Calls made by different agents to ports in 
the same group are sent on different streams, as are calls made by 
one agent to ports in different groups. 

Streams guarantee that messages arrive in good condition. They 
also guarantee exactly-once, ordered delivery of requests: Each call 
request or reply is delivered to the user code exactly once, the 
request for call n + 1 is delivered to the user code at the receiver only 
after the request for call n has been delivered to it, and the reply to 
call n + 1 is delivered to the user code at the sender only after the 
reply to call n has been delivered to it. Of course these semantics 
cannot be realized completely because of problems such as node 
crashes and network partitions. If the system is unable to live up to 
the guarantees, it breaks the stream. It does so only if the sender or 
receiver crashes, or there are serious communication problems. The 
system tries hard to deliver messages before breaking a stream, so 
there is no point in the caller repeating a calf immediately when a 
stream breaks. 

When the system at the receiving side breaks a stream, this 
means that further calls on that stream will be discarded at the 
receiver. Eventually, the system at the sender will also break the 
stream, either independently, or because communication from the 
receiver informs it of the break. When the system at the sending 
side breaks a stream, this means that any calls whose replies have 
not yet been received will never have replies. We rely on the 
language in which the calls were made to do something sensible, 
e.g., cause the calls to terminate with an exception. 

A break at the receiver is either synchronous or asynchronous. A 
synchronous break happens after the reply to a call; that call and all 
calls before it will be unaffected by the break, but later calls will never 
receive replies. An asynchronous break happens independently of 
particular calls, and its effect on the outcome of already-processed 
calls is nondeterministic. Asynchronous breaks happen when there 
are communication problems, so replies to earlier calls may have 
been lost. 

The sender can make a broken stream usable again by resfarting 
it. A restart is equivalent to a break done by the system at the 
sender at that moment, followed by the reincarnation of the stream 
so that calls can be made on it in the future. 

Two additional primitives are available to the sender. The first is a 
flush, which causes the sending of any buffered call requests on the 
flushed stream and the flushing back of replies at the other side. 
(Even without the flush, the system will send these messages 
eventually; the flush merely speeds this up.) The second is a synch. 
Synching not only does a flush, but it causes the caller to wait until 
all earlier calls on the stream have completed. 

2.1. Argus 
To use streams within a programming language, we need to 

identify the language features that correspond to entities, ports, and 
so on. In this section we explain briefly how this is done for Argus, 
The identifications introduced here serve as a basis for the 
remainder of this paper. The reader is referred to [12, 15, 161 for a 
complete description of Argus. 

Argus provides active entities called guardians, each of which 
resides entirely at a single node of a network. Each guardian 
provides operations called handlers that can be called by other 
guardians. In creating a handler, the guardian defines two things: a 
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port that can be used to identify the handler in calls, and a procedure 
that will run when a call arrives to process it. This procedure is 
called automatically by the Argus system when it is time to process a 
call. Ports are grouped by various simple mechanisms, e.g., all ports 
of handlers created when a guardian is created belong to the same 
group. 

A guardian can have many processes running inside it. Some of 
these are created when a guardian first starts to run;’ others are 
created to run handler calls. Each such process will be associated 
with a unique agent. 

When a handler call arrives at a guardian, the Argus system will 
delay its execution until all earlier calls on its stream have completed. 
(Calls on broken streams are discarded automatically, so user code 
never needs to deal with them.) In this way we make it easy for user 
code to ensure that calls on the same stream happen in order. (We 
may provide some explicit overrides to allow more sophisticated 
programs that process calls on the same stream in parallel.) Note, 
however, that calls on different streams can be processed in parallel. 

For example, consider a mailer guardian with handlers send-mail 
and read mail, both in the same group, and suppose it is being used 
by two &nts, Cl and C2. If Cl calls send mail, this call will start to 
run immediately. If C2 then calls read-ma7 this call will also start to 
run immediately, since it is on a different stream than Cl 3 call. Thus 
both calls may be running concunently; each would be run by a 
different process and agent. If Cl now calls read-mail on the same 
stream as its call of send-mail, the processing of this call wilt wait 
until Cl’s send-mail call completes; the call can then start running, 
even though C2’s call of read-mail may still be running. 

Argus already supports RPCs. For example, C2 can make an 
RPC to the read-mail handler of the mailer guardian g by executing 
the statement 

m: message := g.read-mail(u) 
except when no-such-user: . 

when others: 
end 

where readTmai/ signals no-such-user if u is not registered with the 
system. This call delays the calling process until the reply arrives, or 
until the system determines that the call cannot be completed. The 
Argus system terminates the call with the unavailable exception if 
communication is impossible at the moment, and with the failure 
exception if the call is an error, e.g., if guardian g no longer exists. 

The example illustrates the Argus exception handling mechanism 
[ll]. If a call terminates with an exception, control goes to the 

nearest except statement that contains an arm for the exception; an 
others arm handles all exceptions not named explicitly (unavailable 
and failure in the example). The except statement can be attached 
to the call statement as shown, or to any textually including 
statement 

One point ignored in the above discussion is that Argus 
computations run as atomic transactions. Atomic transactions allow 
us to make sense of the above concurrency, e.g., if the calls made 
by Cl and C2 send and read mail for the same user. They also 
allow us to make sense of computations in the presence of failures 
such as node crashes and lost messages. We will discuss 
transactions briefly later in the paper. 

3. Promises 
We concentrate now on how to support stream calls. Our solution 

is intuitive and straightforward. When a stream call is performed, the 
caller receives a “promise” for a result that will arrive later. A 
promise is an object that can be used to “claim” the result when it is 
ready. The type of the promise object reflects the possible results of 

‘or recovers from a crash. Guardians can survive crashes as discussed further 
in [l S]. 

the call, i.e., the type of the result in the normal case, and the names 
and types of the possible exceptions. 

Associated with each handler type is a related promise type. For 
example, for 

ht = handlertype (int) returns (real) signals (foo) 

the related promise type is 

pt = promise returns (real) signals (foo) 

A promise type has a results part, listing the type or types of objects 
returned by the handler call in the normal case, and an exceptions 
part, listing the exceptions of the handler. 

A promise object is in one of two states: blocked or ready. When 
first created as part of making a stream call, a promise is in the 
blocked state. When the call completes, the promise switches to the 
ready state. In this state, it has a value that indicates the outcome of 
the call, i.e., whether the call completed normally or with an 
exception, and the corresponding result in each case. Once a 
promise is ready it remains ready from then on and its value never 
changes again. 

The c/aim operation waits until the promise is ready. Then it 
returns normally if the call terminated normally, and otherwise it 
signals the appropriate exception, e.g., 

y: real := pt$claim(x) 
except when foo: . . . 

when unavailable(s: string): . 
when failure(s: string): . . 

end 

Here x is a promise object of type pt; the form pi$claim illustrates the 
way Argus identifies an operation of a type by concatenating the type 
name with the operation name. A promise can be claimed multiple 
times; the same outcome will occur each time. There is also a ready 
operation, which returns true if the promise is ready and false if it is 
blocked. 

Broken streams are mapped into exceptions and then restarted 
automatically. As mentioned earlier, when there are communication 
problems, RPCs in Argus terminate either with the unavailable 
exception or the failure exception. Unavailable means that the 
problem is temporary, e.g., communication is impossible right now. 
It also means, however, that the system has tried hard so that there 
is no point in the user retrying the call right away. Failore means that 
the problem is permanent, e.g., the handler’s guardian does not 
exist. Thus stream calls (and sends) whose replies are lost because 
of broken streams will terminate with one of these exceptions. Both 
exceptions have a string argument that explains the reason for the 
failure, e.g., f&/ure(“handler does not exist”), or unavailab/e(“cannot 
communicate”). Since any call can fail, every handler can raise the 
exceptions failure and unavailable. We do not bother to list these 
exceptions explicitly. Thus ht and pf both have three exceptions, foe, 
unavailable and failure. 

Arguments and results of handler calls in Argus are passed by 
value [7j. Only certain types of objects are permitted; for example, 
promises are not legal as arguments or results. Since the caller and 
the called module may have different representations for the data 
being communicated, the data are actually sent using an external 
representation. When a call is made, each argument is encoded by 
translating from its representation at the caller to the external 
representation; when the call message arrives at the receiver, the 
arguments are decoded by translating frqm the external 
representation to the internal one. Similarly, results are encoded at 
the receiver and decoded at the sender. Either encoding or 
decoding may fail. For example, when an argument or result is an 
object belonging to some abstract type, encoding and decoding are 
done by user-provided code, which may contain errors. Such a 
failure causes the call to terminate with the failure exception. In 
addition, when the problem happens at the receiver, the stream 
breaks so that further calls on that stream will be discarded. 
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A stream call has the form 

x: pt := stream h(3) 

where h is a handler of type hf. The semantics is as follows: 
1. The call message is produced by encoding the 

arguments. If encoding fails, or if the stream being 
used is already broken, the call fails and signals the 
appropriate (failure or unavailable) exception. In this 
case no promise object is created, and control 
continues at the appropriate except statement. 

2. If the call message is produced successfully, a promise 
object is created in the blocked state and returned to 
the caller, allowing the caller to continue. 

3. Later, when the reply has arrived and it is convenient 
for the system to decode it, and after all promises for 
earlier calls on the stream are in the ready state, the 
reply message is decoded and the promise is changed 
to the ready state with the appropriate value. This 
value will be the (normal or exceptional) result returned 
by the call unless decoding failed, in which case the 
value will be fai/ure(“could not decode”). Decoding 
happens in a process and agent belonging to the 
system. 

% define some type abbreviations 
sinfo = record [ stu: string, grade: grade ] 
info = array [sinfo] 
pt = promise returns (real) 
averages = array [pt] 

grades: info := % this information is pre-recorded and 
% organized alphabetically by student 

begin 
a: averages := averages$create(info$low(grades)) % create new, 

% empty array with the same lower bound as the grades array 

% record grades 
for s: sinfo in info$elements(grades) do 

averages$addh(a, stream recordgrade (sstu, sgrade)) 
end 

flush recordgrade 

% print 
for i: int in averages$indexes(a) do 

stream print(make-string(grades(i].stu, pt$claim(a[i]))) 
end 

synch print 
end except . . . end 

4. Alternatively, before the promise changes to the ready 
state, its stream may break or be restarted. In this 
case, the system changes the promise to the ready 
state with an appropriate value, e.g., 
unavailable(“could not communicate”). 

Hgure 3-1: The Grades Example 

the elements of the array from the low bound to the high bound. The 
elements are produced incrementally; each time an element is 
produced, the loop body is run with that element stored in variable x. 
The loop uses the array addh operation, which extends the array a 
by one and stores the new promise in the new element. When the 
loop is finished, the program flushes the call-stream to ensure that 
the last few calls (and replies) are sent out quickly. 

If desired, the program need not create a promise: this is indicated 
by using stream as a statement instead of an expression, In such a 
situation, the result of the call is still decoded as described above 
and then discarded. Sends do not show up explicitly in Argus. 
Instead whenever a stream call is made to a handler with no normal 
results, the Argus implementation makes the call as a send. 

Claims can be done in any convenient order. We do not require 
that the result of the ith message be claimed before the result of the i 
+ 1 St. As noted above, however, if the i + 1 st result is ready, then so 
is the ith. 

In addition to making calls, Argus programs can flush and synch 
streams. The flush or synch is done on a handler, e.g., 

synch h 

The stream is the same one that would have been chosen in a 
stream call to that handler. In addition to doing a synch on the 
stream, synch allows the program to find out about whether earlier 
stream calls terminated normally or not. Synch returns normally 
only if all previous stream calls (since the last synch or regular RPC 
on the stream or since the stream incarnation was created) returned 
normally; otherwise, it signals exception-reply. It does not return 
information about which calls raised exceptions; to discover this, the 
program must use promises. 

3.1. Example 
As an example, consider a guardian that stores information about 

the grades of students and provides a handler, recordgrade, that 
records a new grade for a student and returns an updated average 
for that student. In addition, a second guardian provides printing of 
grades information via its print operation. The program in Figure 3-l 
uses one stream to record new grades for students and get their new 
averages, and a second stream to print an alphabetical list of 
students with their averages. 

The first four lines of this program simply define abbreviations for 
data types used in the rest of the program. The first loop streams 
the calls of record-grade to the grades database, and stores the 
promises for the averages returned by these calls in array a. It uses 
the array operation elements to obtain the grades information for 
students in alphabetical order; elements is an iterator [lo] that yields 

The second loop claims the promises in the order they were 
generated (namely alphabetically by student name) and makes 
stream calls to the printer. It uses the indexes iterator. which 
produces the legal indices in the array. Since the averages are 
maintained in alphabetical order in array a, the results will be printed 
in order. Furthermore, the averages will be paired with the proper 
students because the elements in the two arrays, a and grades, are 
paired. 

This example uses stream calls both to overlap processing of calls 
and to obtain the benefits of buffering messages for calls and replies. 
A considerable amount of overlapping is possible, since once all 
calls of record-grade have been initiated and the replies start to 
come back, the processing of calls at the grades database can be 
overlapped with the processing of the print requests. In addition, the 
example uses promises as a way of organizing replies in a 
convenient manner (e.g., in an order corresponding to the 
alphabetical ordering of the students), and it relies on the guarantee 
of streams that calls and replies are delivered in call order. 

However, the example does not have as much overlapping as we 
would like. We cannot begin printing results until all calls to the 
grades database have been initiated. A better program would start 
printing as soon as averages can be claimed. We discuss such a 
program in Section 4. 

3.2. Local Forks 
Promises and stream calls allow a client to run in parallel with cells 

to a server, and pick up the replies in a convenient way. However, 
there are two parts to our semantics: the deferred result, which 
allows concurrency between caller and callee, and the ordered 
processing of the calls. It is dear that concurrency would be useful 
without the ordering. Therefore, in this section we extend our 
mechanism to include “forking” of local calls. In addition to creating 
promises by means of stream calls, we also allow them to be made 
by means of forks. A fork causes a call of a local procedure to run in 
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parallel with the caller. When the procedure terminates, its results 
are stored in the promise, which then becomes claimable. 

The semantics of forking is as follows. Suppose foe is a local 
procedure, 

loo: proc (a: array[int]) returns (int) signals (e) 

and pt is the associated promise type 

pt = promise returns (int) signals (e) 

Then the statement 

p: pt := fork foe(a) 

where a is an array of integers leads to the following: 

1. A new prctcess (and agent) is created to run the call 
and the forked procedure is called within that process. 
The arguments are passed by sharing as discussed 
below; encoding or any kind of copying is not needed. 

2. A promise is created in the blocked state and returned 
to the calling process, which then continues running. 
At this point both the caller and the called process are 
running in parallel. 

3. When the called procedure terminates, the promise 
changes to the ready state with the result of the 
procedure as its value. 

There are no lifetime problems caused by fork. Argus procedures 
can share objects but not variables; they have no free variables and 
Argus does not support call-by-reference. Objects reside in a heap 
rather than a stack and continue to exist until they are no longer 
referenced. Arguments (and results) are passed by sharing: a 
pointer to the argument object (in the heap) is passed to the called 
procedure. 

Forked promises are a useful concurrency mechanism in certain 
kinds of programs. One place where this occurs is in construction 
and access of recursive data structures such as lists and trees. For 
example, promises can be used for parallel insertion and searching 
of elements in a binary tree in which the nodes of the tree are 
promises. If a search reaches a node that cannot be claimed yet, it 
waits until the promise is ready. 

3.3. Discussion 
In the preceding subsections we described the Argus promise 

mechanism and showed how promises integrate streams and local 
forked procedures. Using promises for asynchronous remote Calls is 
entirely new, However, many languages have local concurrency of 
the “fork” variety. Our mechanism has advantages over others 
because it is both type safe and provides a convenient way for 
exceptions to be propagated from the forked process to other 
processes that need to know what happened. While some other 
languages provide type-safe mechanisms, e.g., Mesa [17] and 
Modula-2+ [la], none to our knowledge provides exception 
propagation. 

As discussed earlier, the futures of MultiLisp [6] were an important 
influence on our work. In MultiLisp, an object of any type can be a 
future for a value that will arrive later. When the value is needed in a 
computation (e.g., for an addition), it is claimed automatically, and 
the claiming program waits if necessary. 

The uniformity of treating all objects as futures can be Convenient. 
However, futures have two disadvantages. First, they are inefficient 
to implement unless specialized hardware is available, since every 
object must be examined each time it is accessed to determine 
whether or not it is a future. Second, it is difficult to do anything very 
useful with exceptions. In MultiLisp, exceptions are turned into error 
values automatically, and information about the error value 
propagates through the expression that caused the future to be 
claimed and then through surrounding expressions. Such an 
approach makes it difficult for a program to determine the reason for 
the error value. This problem is discussed in [S], which proposes as 
a solution that programs should claim futures explicitly if necessary 

to ensure that the error value is discovered in a scope that knows 
what to do with it. Promises force all programs to be structured like 
this, so the structure of the program using promises will be identical 
to one using futures when safe exception handling is a concern. 

4. Composing Streams 
One kind of program structure that is likely to arise with stream 

calls is the cascading of results of calls on one stream to the inputs 
of calls on another stream. We can think of a cascade as composing 
a number of streams together. A composition can have an arbitrary 
number of levels; in each case, the output of the ith stream becomes 
the input of the i + 1 st stream, possibly with some local computation 
done along the way. 

The grades example illustrates a two-level composition, with the 
results of the first stream (to the database) being sent on to the 
second stream (to the printer). However, as mentioned above, the 
program shown in Figure 3-l does not do what we want since it 
delays streaming to the printer until all calls to the database have 
been started. Instead, we would like to stream the results from the 
database to the printer as they become ready, even if some Calls to 
the database have not yet been made. Obviously, this overlapping 
of recording and printing becomes more important as the number of 
calls increases. 

A further overlapping problem becomes apparent when there are 
more levels in the cascade. For example, suppose there are three 
handlers 

read = handler ( ) returns (argtypel ) signals (el, e2) 
compute = handler (argtypel) returns (argtype2) signals (e3) 
write = handler (argtype2) signals (e4) 

each connected to a different stream. The idea is to pipeline the 
requests for data from the read stream into the compute stream and 
then to pipeline the results of compute into the write stream. 
However, if we use a program like that in Figure 3-1, then 

1. All calls to read must start before any calls to compute 
can be made. 

2. All results from read must be claimed, and all calls to 
compute must be started, before any calls to wrife can 
be made. 

In this section we discuss how to write programs that exhibit the 
desired kind of data flow. One thing to note, however, is that we are 
not interested in connecting the output of one stream directly to the 
input of another, e.g., as is done in pipes in Unix. Instead, we want 
results to return to the original caller who then sends them on to the 
next stream. This program form allows arbitrary filter computations 
to be done to “match” the two streams. For example, the result of a 
call to record-grade is only one of several inputs of a call to the 
printer. Another example concerns exceptions: if a call on the first 
stream signals an exception, the program might compensate for this 
either by manufacturing arguments for the call on the next stream or 
by omitting the call or by terminating the computation. 

A good way to get the composition we desire is to introduce 
concurrency into the controlling program,’ and run each loop (e.g., in 
the grades example) in a separate process. The first loop makes 
stream calls to record_grade and fills up a data structure with 
promises; the second loop consumes these promises and makes the 
stream calls to the printer. Since the loops are running concurrently, 
the first one need not run to completion before the second one starts 
and thus we obtain the desired overlapping. 

*A bad way is to write a sequetiial program that explicitly mukiilexes the use of the 
different streams. 
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4.1. Forks 
Forks are a general concurrency mechanism, so they can be used 

to implement the concurrent loops program structure as shown in 
Figure 4-1. However, the resulting program is less than ideal, as 
discussed further below. 

The first part of the figure defines two procedures, one to do the 
first iteration, and the other to do the second. The main program 
simply forks two processes, one running each of these procedures. 
The processes communicate by means of a shared queue of 
promises, aveq, the process that records grades stores the promises 
created for its stream calls into the queue, and the printing process 
gets the promises from the queue. The queue serves a similar 
function to the array of averages in Figure 3-1, but in addition it also 
synchronizes the two processes: when a process attempts to deq an 
element from the queue, it will wait if the queue is empty until an 
element is enqueued. Queues can be implemented using standard 
synchronization mechanisms such as semaphores [3] or 
monitors [a]. 

The two local forks have associated promises so that the main 
program can wait until the two processes are done and so that any 
exceptions raised can be handled in the main program. Note that 
each procedure does a synch on its stream before it returns; 
therefore, if it returns normally, this means all calls it made 
completed successfully. (Of course, doing things right when only 
some of the grades have been recorded requires more sophistication 
than is shown in this program. Argus provides this ability by allowing 
computations to run as atomic transactions, as discussed further in 
the next section.) 

As mentioned above, the program is less than ideal: it is 
awkward, and it has a termination problem. It is awkward to have to 
define the procedures use-db and dosrint it would be more 
convenient to write the code of the procedures right where they are 
used. Having to create and claim promises when there are no 
normal results is also awkward. The termination problem arises if 
the recording process terminates early because of a communication 
problem; in this case the printing process may hang forever waiting 
to dequeue the next promise from the queue. 

The termination problem will arise in every stream composition; in 
each case, we will need the ability to treat the processes as a group 
and to allow a process in the group to cause the termination of the 
other processes in the group. Furthermore, programming proper 
termination explicitly can be quite tricky. Therefore, rather then fixing 
this program, we instead go on in the next section to define a 
different linguistic mechanism that overcomes both difficulties. 

4.2. Coenters 
What we would like is a way to identity the set of processes that 

implement a stream composition, so that they can be terminated 
properly when problems arise. In addition, it would be convenient to 
write the forked code inline. Argus already provides a mechanism 
that provides these abilities, the coenter statement. The coenter 
statement is similar to mechanisms in other languages (e.g., 
CSP [9]); it differs from these other mechanisms primarily because it 
offers a complete and sensible treatment of exceptions and early 
termination. 

An example of the coenter is shown in Figure 4-2. A coenter 
statement contains a number of arms, each defining a computation 
to be run as a process. Execution of a coenter occurs as follows: A 
process and agent are created to run each arm, and these 
processes start to run in some undefined order; we will refer to these 
newly created processes as subprocesses. The process executing 
the coenter is halted, and remains halted until all the subprocesses 
complete. Completion can happen in one of two ways. First, each 
subprocess may simply finish execution of its arm. In addition, 
however, a subprocess can cause other subprocesses to terminate 
early. It does this by causing a control transfer outside of the 
coenter. In this case, any remaining subprocesses that are not yet 
finished are forced to terminate (as discussed further below) before 
the “parent” process can continue. 

pt = promise returns (real) 
pi1 = promise signals (cannot-record) 
pt2 = promise signals (cannotprint) 

use-db = proc (grades: sinfo, aveq: queue[pt]) signals 
(cannot-record) 

for s: sinfo in sinfo$elements(grades) do 
queue[pt]$enq(aveq, stream recordgrade (s.stu, s.grade)) 
end except when others: signal cannot-record end 

synch recordgrade 
except when others: signal cannot-record end 

end use-db 

dogrint = proc (grades: sinfo, aveq: queue[pt]) 
signals (cannotgrint) 

for i: int in sinfo$indexes(grades) do 
ave: pt := queue[pt]$deq(aveq) 
stream print(make-string(grades[i].stu, pt$claim(ave))) 
end except when others: signal cannotgrint end 

synch print except when others: signal cannotprint end 
end dogrint 

% composing the streams 

aveq: queue[pt] := queue[pt]$create( ) 
pl: ptl := fork use-db (grades, aveq) 
p2: pt2 := fork dogrint (grades, aveq) 
ptl $claim(pl) except when cannot-record: . end 
pQ$claim(p2) except when cannotgrint: end 

Figure 4-1: Using Forks 

pt = promise returns (real) 
aveq: queue[pt] := queue(pt]$create( ) 
coenter 

actlon % recording grades 
for s: sinfo in sinfo$elements(grades) do 

queue[pt]$enq(aveq, stream recordgrade (sstu, sgrade)) 
end 

synch recordgrade 

action % printing 
for i: int in sinfo$indexes(grades) do 

ave: pt := queue[pt]$deq(aveq) 
stream print(make-string(grades[i].stu, pt$claim(ave))) 
end 

synch print 

end % coenter 
except when others: % in this case some work did not finish 

Figure 4-2: Using Coenters 

The figure implements the grades example using the coenter. 
Recording of grades is done in one arm; printing is done in the other. 
Each arm is run as an action, as discussed further below. If any 
stream problems are encountered in either arm, this will cause early 
termination of the coenter because these exceptions are not 
handled in the arms, but instead go to the except statement 
following the coenter. When such an exception is raised, the other 
arm (the one that did not cause the exception) is also terminated 
before the except statement is executed. For example, if the stream 
to the grades database breaks and this is discovered in the.recording 
process because the next stream call raises an exception, then both 
the recording process and the printing process will be terminated 
immediately and control will continue in the parent process at the 
except statement. As mentioned earlier, without forced termination, 
the printing process might hang forever waiting to dequeue the next 
item from the queue. 
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Early termination of processes raises a question of safety. First, 
the process might be in the middle of a critical section; stopping it at 
such a point could leave damaged data. For example, if the printing 
process were terminated in the middle of dequeuing, this could leave 
the aveq in a damaged state. We solve this problem by delaying 
termination while a process is in a critical section. The Argus 
runtime system keeps track of how many critical sections a process 
is in and delays its termination until the count is zero; the system can 
do this because Argus provides a built-in critical section mechanism. 
To encourage a process to leave critical sections rapidly when it 
should terminate, we “wound” it by greatly restricting what it can do. 
For example, it cannot make any remote calls at such a point.3 

Even if we solve the safety problem at this level, however, it recurs 
at a higher level. For example, recording grades is not something 
that should be done pati way. This level of safety is provided in 
Argus by means of atomic transactions. An atomic transaction either 
completes entirely or is guaranteed to have no effect. Thus, running 
the recording process as an atomic transaction can ensure that if it is 
not possible to record all grades, none will be recorded. In the 
example, both processes are running as transactions. 

When an action is terminated, we do not wait to terminate any 
calls that may be running elsewhere. Instead. the Argus system 
guarantees that it will find these computations and destroy them 
later [13]. Thus, for example, if the recording action terminates the 
coenter, we can do the termination immediately without waiting for 
calls to the grades database or the printer to complete. 

Complete discussion of atomic&y is beyond the scope of this 
paper; a full treatment of transactions, including integration into the 
coellter, can be found in [16]. Atomicity can also be used in the 
program in Figure 4-l ; it is not limited to the coenter.4 However, as 
mentioned earlier, the program with forks would have to indicate 
somehow what actions to abort in the case of a problem; wtth the 
coenter, this information is available from the program structure. 

A coenter is the appropriate mechanism to use when the 
processes have no results and when the control structure is naturally 
hierarchical, i.e., it makes sense to delay the parent until the children 
are finished. When these conditions are not satisfied, a fork will be 
a better mechanism. Note that with hierarchical control there is no 
variable lifetime problem. 

4.3. Discussion 
The preceding sections discussed two ways to program stream 

composition: with forks and with the coenter. For stream 
composition, the coenter mechanism is preferable because it allows 
us to indicate directly what processes are involved in the 
composition, which in turns allows those processes to be terminated 
as a group if a problem arises. A secondary advantage of the 
coenter is that the code of the processes can be written in line. 

In our discussion of composition, we assumed that there was one 
module that made the calls and ran the filters. (Recall that filters 
match resutts of one call to arguments of the next call.) It would be 
more efficient to send the filters along with the calls. This would 
allow a structure more like a real pipeline: results of calls on the first 
stream would be sent directly in calls on the second stream, and so 
on, without the need to first send the replies back to the original 
caller. However, such a structure is not practical in a heterogeneous 
system, since different programming languages may be in use at the 

?f a wounded process does not terminate quiokly enough, we simply crash Rs 
guardian. Each Argus guardian is written to suwive crashes. More details can be 
found in [15]. 

*Atomicky cannd prevent partial results from ekternal activities like printing. If a 
failure prevents an external activity from finishing, there will always be uncertainty as 
to whether it happened or not. An example of where this wouM be a problem is when 
a cash vending machine dispenses money. The best that can be dons is to rsducx 
tJw uncertainty to a very small duration so that the probability of a failure happening in 
that time is very small. 

ends of the streams. Sending filters makes more sense in a 
homogeneous system, but even here it raises difficult issues about 
how to implement the sending of code in messages. 

The programs discussed above were organized around the 
streams, i.e., each process was in charge of making calls on a Single 
stream. Another way to look at the problem is in terms of what 
happens to an individual data item, e.g., a grade is first recorded and 
then printed. With this structure, there would be a Process Per item. 
Each process would move its item from one stream to another, thus 
using atI the streams of the cascade; synchronization would be 
needed to ensure that the calls on each stream were made in order. 
To implement such a structure, we need a way of spawning a 
dynamically determined number of processes. Although the 
concurrency can be obtained by forks, this leads to the same group 
termination problem discussed above. Instead a mechanism with 
automatic grouping is preferable. Argus provides such a 
mechanism, which extends the coenter to allow a dynamic number 
of processes. 

Providing concurrency per data item is both an advantage and a 
problem. The advantage is that the extra concurrency may be useful 
since it permits us to run the filters in parallel. Clearly, this is of 
interest only if the filters are lengthy, and only on a multiprocessor. 
The problem is that there are many more processes to manage than 
in the process-per-stream case. This can impose a substantial 
burden on the system, and even slow down the program. Although a 
good system implementation might be able to do a reasonable job, 
the process-per-stream structure avoids the whole problem and 
therefore is better, at least on a sequential machine. 

Instead of using coenters or forks, another possibility is to provide 
a construct that supports composition directly. Such a structure 
could lead both to simpler programs and better performance. 
However, it is not clear that stream composition is important enough 
to justify its own linguistic mechanism. At present, we believe that 
the coenter form is adequate for our needs. 

5. Conclusions 
Streams were invented to improve the performance of distributed 

programs. In our system we are interested in a very general class of 
applications written in a wide variety of languages. Our approach is 
to allow programs to be connected in a flexible and efficient way with 
streams. At the same time, however, streams support high-level 
interfaces, each consisting of a set of procedures that clients can 
call. Even though a client may have several calls to a sewer in 
progress simultaneously, the meaning of the calls is the same as if 
they were made one at a time. 

Streams make no statement about what linguistic mechanisms 
should be used to interact with them. However, in adding streams to 
a programming language, it is important not to undermine their 
performance goals. In addition, it is desirable that the use of streams 
continue to follow the procedure call model. Our main contribution 
has been the provision of a mechanism that retains the benefits of 
procedural interaction without sacrificing performance. Reasoning 
about the correctness of a program that uses promises to make calls 
on a single stream is no different from reasoning about the same 
program using traditional APC. Such reasoning is considerably less 
complex than reasoning about general message passing. 

Most languages for distributed systems provide a procedure- 
oriented communication mechanism. Examples are Ada [19] and 
SR [l]. The advantages of this approach are well known: it allows 
simpler programs to be written that are easier to reason about. 
However, none of these languages allows the efficiency of 
streaming. Programs in these languages can be optimized only to 
reduce the delay of individual calls, not to improve the throughput of 
groups of calls. 

The deficiency of remote calls for high throughput is also well 
known, and some languages, such as Plits [4] and ‘MOD (21, have 
attempted to solve this problem by providing explicit send and 
receive primitives. Here the sender need wait only until the message 
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is produced. Later the outcome of the processing that happens in 
response to the message is sent to the original caller in a separate 
message that the caller receives. The send/receive approach can 
allow programs to achieve high throughput, but it leads to complex 
and ill-structured programs. The difficulty is that to obtain the 
efficiency benefits of streaming, it is necessary to have many “calls” 
in progress at a time, and it is entirely the responsibility of the user 
code to relate reply messages with the calls that caused them. 
Promises and streams, however, retain high throughput without 
imposing this burden. 

Note that promises and streams provide almost the full flexibility of 
send/receive. Send/receive does not require pairing of messages, 
but as a practical matter pairing is always needed, because 
ultimately the caller needs to find out what happened. Sometimes, 
pairing of send/receive takes the form of one reply for many calls; we 
can accomplish this with sends. Sometimes, however, the reply 
comes from a third party, a mechanism we do not support. 

We also considered the use of promises with forks. Promises for 
streams have three properties: concurrency of caller and callee, 
caller control of claiming and putting promises in data structures, and 
ordering of the processing of a sequence of calls on a stream. 
Promises for forks have only the first two properties, but are 
nevertheless very useful. In particular, the ability to propagate 
exceptions from the forked process to some other process in a 
convenient manner is extremely useful, and represents a solution to 
a problem that has been a concern to language designers in this 
area. 

Introduction of streams naturally leads to the problem of how to 
compose them. A composition allows cascading of information from 
one stream to the next. Concurrency is a natural way to do stream 
composition, since we want to start calls on the nth stream in parallel 
with calls on the n - lSt stream. We investigated what programs that 
compose streams are like, and what linguistic mechanisms are 
useful to support this composition. 

We conclude that promises are a good way of supporting efficient, 
asynchronous remote procedure calls in a programming language. 
The extension to forks allows remote and local concurrency to be 
provided in a uniform way. Although forks can permit composition of 
streams, better structured programs result from a mechanism like the 
coenter, which also handles process termination properly. 
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