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Abstract 

The use of distributed data structures in a logically-shared memory is a natural, 
readily-understood approach to parallel programming. The principal argument against such 
an approach for portable software has always been that efficient implementations could not 
scale to massively-parallel, distributed memory machines. Now, however, there is growing 
evidence that it /s possible to develop efficient and portable implementations of virtual 
shared memory models on scalable architectures. In this paper we discuss one particular 
example: Linda. After presenting an introduction to the Linda model, we focus on the 
expressiveness of the model, on techniques required to build efficient implementations, and 
on observed performance both on workstation networks and distributed-memory parallel 
machines. Finally, we conclude by briefly discussing the range of applications developed 
with Linda and Linda's suitability for the sorts of heterogeneous, dynamically-changing 
computational environments that are of growing significance. 

Key words: Message passing; LINDA; Virtual shared memory; Evaluation; Parallel pro- 
gramming paradigm 

1. Introduct ion 

Mos t  of  the  p a p e r s  in this  specia l  issue dea l  wi th  message -pass ing  l ibrar ies .  
Message  pass ing  is a coo rd ina t i on  m o d e l  tha t  ar ises  d i rec t ly  f rom the  a rch i t ec tu re  
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of networks and distributed-memory multiprocessors. Communication in such 
systems takes place via clumps of data, or 'messages,' sent from one address space 
to another - reflecting the fact that sending bits over a wire is the physical 
communication mode in those environments. An alternative model, coordination 
by means of a virtual shared memory, comes about in a very different way - it 
arises naturally from a familiar paradigm for writing parallel programs, namely, 
multiple processes interacting by means of shared data. 

The use of distributed data structures in a logically-shared memory is a natural, 
readily-understood approach to parallel programming. After all, it represents a 
minimal extension of the underlying basis for sequential programming, and it has 
been used widely on shared-memory parallel hardware. The principal argument 
against such an approach for portable software has been that efficient implementa- 
tions could not scale to massively-parallel, distributed memory machines. As a 
result, paradigms like message-passing were developed to cater to non-shared- 
memory architectures. 

Now, however, there is growing evidence that it is possible to develop efficient 
and portable implementations of virtual shared memory models on scalable archi- 
tectures. The example we discuss in this paper is Linda, specifically the commercial 
C- and Fortran-based systems available from Scientific Computing Associates, Inc. 
With Linda, programmers can develop programs that use a shared-memory model, 
are portable, and achieve high performance over a wide range of machines and 
networks, independent of whether the hardware itself provides any support for 
shared memory (either real or virtual). 

In this paper  we address a number of issues regarding Linda and contrast it with 
message passing. After presenting an introduction to the Linda model, we will 
focus mainly on expressivity of the model, on performance issues, and on flexibility 
and usability. Because of the great amount of interest in cluster or farm comput- 
ing, particularly on heterogeneous collections of powerful RISC workstations, we 
frame much of our discussion in terms of a network setting. However, Linda is 
widely used on other architectures as well, so we also include some basic discussion 
of performance in such settings. Finally, in our concluding remarks, we briefly 
address two additional important issues that go to the heart of Linda's long term 
viability: 
(1) Linda's impact in practice (that is, the range of applications developed with 

Linda); and 
(2) Linda's adaptability (that is, its suitability for the sorts of heterogeneous, 

dynamically-changing computational environments that are of growing signifi- 
cance). 

2. The Linda model 

We begin our discussion by providing some basic background on Linda. Here  
and throughout this paper, we will consider only the commercial releases of 
C-Linda [24] and Fortran-Linda [25] from Scientific Computing Associates, Inc. 
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(SCIENTIFIC). In part, this restriction is due to some significant differences in 
syntax and semantics between SCIENTIFIC's language-level systems and other 
library-based implementations of Linda-like systems with which we are familiar. 
More importantly, though, the performance of any Linda implementation depends 
heavily on the levels of optimization achieved at compile-time and at run-time, and 
we have direct knowledge of the details only for SCIENTIFIC's systems. 

As a language extension, Linda comprises a small number of powerful opera- 
tions that may be integrated into a conventional base programming language, 
yielding a dialect that supports parallel programming. Thus, for example, C and 
Fortran with the addition of the Linda operations become the parallel program- 
ming languages C-Linda and Fortran-Linda. SCIENTIFIC's implementations 
translate from the Linda parallel language (C-Linda or Fortran-Linda) into the 
corresponding base language (C or Fortran), automatically generate required 
auxiliary routines, and incorporate optimized kernel libraries to support the Linda 
operations at run-time. Portability comes from the consistency of the language 
processing between systems, while efficiency comes from the use of native C and 
Fortran compilers for the actual generation of object code, and from hardware- 
specific implementations of the kernels. Commercial versions of Linda now run 
well on a broad range of parallel computers, from shared-memory multiprocessors, 
to distributed-memory machines such as hypercubes, to networks of workstations. 
Since Linda has been discussed at length in the literature (e.g. [2,3,11,13]), we 
provide a relatively brief description here. 

Linda-based languages and their associated run-time systems provide support 
for the Linda programming model, which is a memory model based on a virtual, 
associative, logically-shared memory called tuple space. Tuple space contains a 
collection of ordered sequences of data called tuples. Each field of a tuple contains 
actual data in the form of one of the valid types (including aggregates like arrays, 
structures, and, in the case of Fortran-Linda, common blocks) of the base pro- 
gramming language. For example, the following are valid tuples in Fortran-Linda: 1 

('comment string', 1, 12, 4.99) 

('logical data', .FALSE.) 

('array data', [I 3 5 7]) 

Tuples may be created and inserted into tuple space in two different ways: 
serially or in parallel. Serial creation is accomplished using Linda's ou t operation. 
For example, assuming that a is a R E n L one-dimensional array and that f ( ) is a 
R E A L-valued Fortran function subprogram, then the following o u t operations both 
produce (different) 4-field tuples: 

out('north', i, j, a) 

1 When  necessary for clarity, we use the notation '[...]' to delimit aggregate tuple fields. Such fields 
always differ from sequences of single-valued fields. We  also note that use of a string as the first field is 
purely stylistic, though it may somet imes permit better  discrimination of tuple classes during optimiza- 
tion and thus lead to better  performance.  
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o r  

out('table entry', i, j, f(i,j)) 

When the out  operat ion is used, all tuple fields (which appear  as arguments to 
o u t )  are completely evaluated serially by the process containing the o u t. Following 
evaluation, the resulting tuple is installed in tuple space as a passive data tuple, 
and the process continues with the next statement.  

Linda's e v a t operat ion is used for parallel creation of tuples, as in 

eval('table entry', i, f(i)) 

In principle, all arguments to eva t are evaluated in parallel, in separate 
processes, while the original process continues immediately. For efficiency, how- 
ever, most implementat ions actually evaluate fields serially, as with o u t ,  except for 
those fields containing procedure invocations. As in this example, the eva t 
operat ion may cause the creation of new independent  processes (here to evaluate 
f ( i ) ), which run in parallel and accomplish work by creating, using, and consum- 
ing tuples. After  all the arguments to eva I have been completely evaluated, 2 the 
resulting tuple is installed in tuple space, just as with o u t. Once a tuple has been 
inserted into tuple space, the manner  of its creation is irrelevant; identical tuples 
created by different Linda operations are indistinguishable. 

Tuple space is an associative memory. Tuples have no addresses; they are 
selected for retrieval on the basis of any combination of their field values. Thus the 
five-element tuple (A, B, C, D, E )  may be referenced as ' the  five-element tuple 
whose first element is A, '  or as ' the  five-element tuple whose second element is B 
and fifth is E '  or by any other  combination of element values. Linda provides two 
basic operations to retrieve data from tuples in tuple space: in and rd .  i n ( S )  

causes some tuple t that associatively matches the template s to be withdrawn from 
tuple space, rd(s)  is identical to i n(s), except that the matching tuple t remains in 
tuple space. 

A template  is a sequence of typed fields that may be either actual values (just as 
in tuples), or formal place-holders. Roughly, a tuple t matches the template s if 
both have the same number  of  fields, the types of the fields match pairwise, and 
each actual value in s matches the value in the corresponding field of t. If  a 
suitable t is found, the values of the actuals in t are bound to the corresponding 
formals in s, and the invoking process continues. I f  no matching t is available 
when in(s)  or rd(s)  executes, the invoking process suspends until one becomes 
available, after which time it proceeds as before. If  many matching t ' s  are 
available, one is chosen arbitrarily. 

To read the five-element tuple (A, B, C, D, E )  using the first description given 
above, one would write r d ( A ,  ?w, ?x ,  ?y ,  ? z ) .  In this case A is an actual 
paramete r  to be matched against, and w through z are formals whose values will be 
filled in from the matched tuple. To read the same tuple using the second 
description given above, one would write r d ( ? v ,  B ,  ? x ,  ? y ,  E). 

2 A procedure evaluates to its return value, or to INTEGER 0, in the case of Fortran subroutines. 
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3. Evaluating Linda 

As noted in the Introduction, we want to discuss Linda's effectiveness as a 
programming model and to contrast its performance with that of message passing 
in a number of settings. One way to evaluate a programming model is to examine 
its expressiveness - what can be expressed, and how easily and concisely. We will 
address both of these topics: first, by examining Linda's ability to support a 
number of different parallel programming paradigms, and second, by looking at 
how it can be applied to a particular class of computations implemented frequently 
on scalable parallel architectures. Expressiveness by itself, of  course, is not 
especially valuable if it comes with a substantial loss of efficiency. In order to 
address the common misconception that efficient implementations of virtual shared 
memories are unachievable, we next discuss some of the optimization techniques 
used to implement Linda systems efficiently. Finally, to confirm our assertion that 
Linda can be both expressive and efficient, we present a number of performance 
results both for networks and for arguably-scalable parallel architectures. 

3.1 Support for parallel programming paradigms 

Linda provides excellent support for a wide variety of approaches to parallel 
programming. One particular paradigm that has been used frequently with Linda 
is known as the Master/Worker Model [13]. Typically, this entails the use of 
distributed data structures and a group of worker processes (not necessarily 
identical) that examine a n d / o r  modify the data structures in parallel under the 
general supervision of a master process (which may, itself, do work as well). A 
great strength of the Linda model is its explicit support for distributed data 
structures, i.e. data structures that are uniformly and directly accessible to many 
processes simultaneously. Any tuple sitting in Linda tuple space meets this 
criterion: it is directly accessible - via the Linda operations described above - to 
any process using that tuple space. Thus, a single tuple constitutes a simple 
distributed data structure, but it is easy and often useful to build more complicated 
multi-tuple structures (arrays, queues, or tables, for example) as well. By compari- 
son, message passing systems deal solely with transient data (messages) that exist 
for only a limited time: between assembly by the sender and disassembly by the 
receiver. Moreover, the messages are accessible only to two processes and at 
specific times: the sender before transmission and the receiver after transmission. 

Another  feature of the Linda model is its intentionally loose coupling among 
processes. Some other models implicitly or explicitly bind processes tightly to- 
gether. Taken to an extreme, this gives data parallel or SIMD models in which all 
processes perform identical operations in lock step. Even message passing assumes 
that there is significant underlying synchronization between message senders and 
receivers. In contrast, Linda processes can be designed to know exactly as much 
about one another  as is appropriate for the programming situation at hand. Since 
processes interact only through the intermediation of data stored in tuple space, 
programmers need not think in terms of any particular logical process architecture, 
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Fig. 1. Domain decomposition for rectangular region. 
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nor even in terms of simultaneously-executing processes. This simplifies greatly the 
potentially formidable task of parallel programming, since each individual process 
can be developed more-or-less independently of the others. 

Linda's loose interprocess coupling has other advantages as well. Tuple space 
can be viewed as a long term data memory - once installed, tuples remain in tuple 
space until they are explicitly removed by some process. Thus, processes can 
interact through time as well as space (or machine location), since the producer 
and consumer of a tuple need never coexist simultaneously. A natural application 
of this idea arises when parallel computations produce output data that must later 
be used as inputs by completely independent visualization programs or other 
postprocessors. This sort of interaction is easy to express in Linda, but may well be 
extremely difficult to express using paradigms like message passing for which the 
'data'  (i.e. messages) have no long term existence. 

The Linda model is extremely flexible and can support both static and dynamic 
load balancing strategies. Static strategies generally arise from fixed decomposi- 
tions of large data structures into pieces that are assigned to and managed by the 
individual processes. For example, an array containing the values of some variable 
in every cell of a computational grid can be decomposed into non-overlapping 
pieces corresponding to subgrids, with each process taking responsibility for all 
computations involving one piece (see Fig. 1). If a process should require data 
from another process's piece, it then has to acquire that data from the owning 
process using some appropriate data sharing protocol. The efficiency of such an 
arrangement depends on a suitable decomposition in which relatively few data 
transfers are required between processes. In general, any repetitive computation 
can only be well balanced statically if the pieces owned by the different processes 
require roughly equal amounts of computation. 

Implementing a static strategy in Linda is straightforward: each process stores 
its piece of the data locally, and data tuples containing subdomain boundary data 
are created when data sharing is required. This is efficient because most of the 
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data is in local (private) storage, and tuple space and Linda operations are used 
only for necessary data sharing. Since efficient Linda implementations exist for a 
wide variety of machines, software developers can easily build software that 
achieves high performance while still retaining portability. 

There  are many situations, however, where static load balancing strategies fail 
because it is impossible to create an even division of labor based on a priori 
analysis. Therefore,  it is important that Linda can efficiently support dynamic load 
balancing strategies as well as static ones. One technique for doing so involves 
viewing tuple space as a 'bag' of tasks to be performed, with individual tuples 
holding the inputs for a single task. Processes can acquire one of these 'task 
tuples,' perform the required work, and create a new tuple containing the results. 
Load balance occurs almost automatically, even with heterogeneous processors, 
since processes that complete tasks quickly can complete several tasks in the time 
taken by other processes to complete just one. The key to the efficiency of this 
approach is that there need be no a priori assignment of tasks to processes; the 
Linda operations implicitly support the notion that processes can acquire task 
tuples exactly as rapidly as they are ready for them. Moreover, a simple extension 
of this idea, using an ordered task queue, rather than a bag, can yield good 
performance even in the presence of variably-sized tasks, for which it is important 
to perform larger tasks first. 

To illustrate the simplicity and elegance of a Linda approach to dynamic load 
balancing, we examine a Fortran-Linda program fragment that implements a 
dynamically-balanced approach to the phase behavior computations arising in 
compositional petroleum reservoir simulation. In the program fragment shown in 
Fig. 2, it is assumed that each worker process is responsible for one subdomain of 
the computational mesh (as in Fig. 1, for example), and, as is often the case in 
practice, that the cost of solving the single-cell nonlinear phase behavior equations 
(in the routine pvtcai, c) is at once both large and extremely variable, not only 
from grid cell to grid cell within a time step, but also from time step to time step 
for any given cell. To achieve dynamic load balance, each worker begins by 
creating a large number of task tuples containing the worker's logical task number, 
a local cell number, and the input data for that cell. After creating all of its task 
tuples, each worker enters a loop in which it grabs a task, carries out the necessary 
computation, and deposits a result tuple in tuple space. Finally, each worker 
retrieves the results for its own cells. Of  course, it is possible to refine this 
approach in a variety of ways to improve performance, but the basic idea remains 
the same. For a full discussion of this particular application, see [27]. 

3.2 Expressiveness for  a typical application 

Linda has often been described as a highly expressive coordination model - one 
that lends itself to clear and concise programs. It's impossible to 'prove'  such an 
assertion, of course, but one way to support it is to examine representative 
programming examples offered by developers of other systems, recode them in 
Linda, and compare. For example, Carriero and Gelernter  [14,15] have done this 
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c 
c task tuple creation loop 
c 

if (my_last_cell .eq. total_cells) out('cells left', totalcells) 
do i = my_first_cell, my_last cell 

out('pvt data', my_proc_num, i, p(i), t(i) .... ) 
enddo 

c 
c grab tasks and do the computation 
c 

do i = l, total_cells 
in('cells left', ?count) 
out('cells left', count-l) 
if (count .le. O) go to I0 
in('pvt data', ?proc_num, ?j, ?pressure, ?temp .... ) 
call pvtcalc( pressure, temp, ..., satl, satv, ... ) 
out(Spvt results', proc_num, j, satl, satv .... ) 

enddo 
i0 continue 

c 
c result collection loop 
c 

do i = my_first_cell, my_last cell 
in('pvt results', my_proc_num, ?j, ?satl, ?satv, ... ) 
sl(j) = satl 
sv(j) = satv 

enddo 

Fig. 2. Simple program for dynamic load balancing. 

for a number of popular systems. In this section, we take a somewhat different 
approach in which we examine the advantages of using Linda to express a type of 
computation often implemented on scalable parallel architectures using message- 
passing systems. 

The particular computation we consider here is the use of a simple explicit 
method for finite difference solution of a two-dimensional time-dependent 
parabolic partial differential equation on a rectangular domain. A standard ap- 
proach to parallel implementation of such a method is based on the idea of 
domain decomposition: the computational domain is divided approximately evenly 
among a group of processors, each member of which is responsible for advancing 
the solution in its own subdomain. There are a number of ways to do this, and we 
focus on the use of subdomains that are two-dimensional tiles (see Fig. 1). Because 
of the local nature of finite difference approximations, the computations in each 
subdomain are independent of the others, except at the subdomain edges, where 
data must be exchanged with the processors responsible for neighboring subdo- 
mains. In general, the computation within a subdomain dominates the cost of data 
exchange across the subdomain boundaries, though that is certainly dependent on 
the size of the mesh, the number and kind of processors, and the medium through 
which data is exchanged. 

The description of the computational process makes it sound like a natural 
application for message passing, and, indeed, there have been numerous imple- 
mentations based on various message-passing paradigms. Deshpande and Schultz 
[17] discuss problems like this, comparing message-passing and Linda implementa- 
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tions developed in C and run on a variety of platforms. Here,  however, we want to 
examine the ways in which Linda's expressivity can ease the implementation in 
Fortran of this type of finite difference computation. 

Figs. 3a and 3b show fragments of a Fortran-Linda program that takes a 
specified number (nts) of time steps of an explicit Euler-type scheme to advance 
the solution u(x, t) of the heat equation 

()U O2U ~)2U 
- -  _ _  - [ -  - -  

8t 0X 2 Oy2 

with suitable boundary and initial conditions on a rectangular nx × ny computa- 
tional mesh. For a timestep dt and a uniform mesh spacings dx and dy (in the x 
and y directions, respectively), the basic computational equation (ignoring the 
boundary conditions) is given by: 

u(x ,  y, t+  dt) = u(x ,  y, t)  

dt 
+ ~--~{u(x + dx, y, t) + u ( x - d x ,  y, t) - 2 u ( x ,  y, t)} 

dt 
+ dy 2 {u(x ,  y + dr, t) + u(x ,  Y -  dr, t) - 2 u ( x ,  y, t)} 

While this method is only useful in practice for restricted values of dt, dx, and 
dy, the programming issues involved in implementing it are similar to those arising 
from more advanced methods. 

Our Fortran-Linda implementation makes use of a single master process and a 
number of identical worker processes. The master process handles overall setup 
and process management,  invokes the workers, and participates in the computa- 
tion by handling one of the mesh subdomains. Each worker process is responsible 
for a single subdomain, cooperating with other processes to exchange data along 
subdomain boundaries. For convenience in presentation, we have omitted most of 
the variable declarations and some of the less important code. We assume that 
variables whose names are entirely in capital letters (e.g. NXMAX) are specified in 
Fortran PARAMETER statements. 

The master process fragment (Fig. 3(a)) begins by placing some global 
common-block data into tuple space for access by all processes using the state- 
ment: 

out('parms common', /parms/) 

Notice that Fortran-Linda permits the use of a common-block name to refer to 
the entire common block in Linda operations, essentially viewing the common 
block as a special datatype. This sort of syntax extension is possible with a 
language-level tool like Linda, but is impossible in systems based only on the use of 
communication libraries. 

Next, the master creates the worker processes using Linda's eva t operation. 
The arguments of the eva t operation in this case include a reference to the 
w o r k e r subroutine, with arguments, thus causing the workers to begin execution at 
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the start of  that subroutine. It is significant here that there is no artificial 'process 
id' required to set up the worker processes - each of  the workers determines what 
it does and how it interacts with other processes based solely on the four 
arguments specifying the boundaries of  its subdomain. In most message-passing 
systems, each process has some sort of  id or handle, and it is essential that each 
worker know the ids of  each neighboring process. 

The Linda approach here has an important advantage in that the master can 
assign subdomains to the workers in any way it chooses,  so long as the corners of  
adjacent subdomains match up properly. There is no requirement that regular 
subdivision be used, or that each worker even be able to identify its neighboring 
processes; each worker only needs  to be able to describe the data it needs from 

® 

c 

c 

c 

c 
c 
c 

subroutine real_main() 

common /parms/ cflx, cfly, nts 

dimension u(NXMAX,NYMAX) 

; (compute initial data, determine nxloc, nyloc, dr, dx, dy, nts, etc.) 

set up compute processes 

cflx = dt / dx**2 
cfly = dt / dy**2 
out('parms common', /parms/) 
np= 0 
do ix = i, nx, nxloc 

ixmin = ix 
ixmax = min(ix + nxloc - i, nx) 
do iy = i, ny, nyloc 

iymin = iy 
iymax = min(iy + nyloc - i, ny) 
np= np+ 1 
if (ixmax.lt.nx .or. iymax.lt.ny) then 

eval('worker', worker(ixmin, ixmax, iymin, iymax)) 
endif 
out('initial data', ixmin, iymin, u(ixmin:ixmax, iymin:iymax)) 

enddo 
enddo 

do computation locally as well 

call worker(ixmin, ixmax, iymin, iymax) 

collect results 

do i=l,np 
in('result id', ?ixmin, ?ixmax, ?iymin, ?iymax) 
in('result', ixmin, iymin, ?u(ixmin:ixmax, iymin:iymax)) 

enddo 

return 
end 

Fig. 3(a). Linda program fragment (master routine). 
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® 
subroutine worker(ixmin, ixmax, iymin, iymax) 
common /parms/ cflx, cfly, nts 
dimension uloc(NXLOCAL+2, NYLOCAL+2, 2) 

c 
nxloc = ixmax - ixmin + 1 
nyloc = iymax - iymin + 1 

c 
rd('parms common', ?/parms/) 
in('initial data', ixmin, iymin, ?uloe(2:nxloc+l, 2:nyloe+l, I)) 

c 
... Set edges of uloc to boundary values as appropriate 

c 
iz = 1 
do it = i, nts 

call step(ixmin, ixmax, iymin, iymax, NXLOCAL+2, nxloc, nyloc, 
1 iz, uloc(l, I, iz), uloc(l, i, 3-iz)) 

iz = 3 - iz 
enddo 

c 
out('result id', ixmin, ixmax, iymin, iymax) 
out('result', ixmin, iymin, uloc(2:nxloc+l, 2:nyloc+l, iz)) 

c 
return 
end 

subroutine step(ixmin, ixmax, iymin, iymax, nrows, nxloc, nyloc, 
1 iz, ul, u2) 

c 
common /parms/ cflx, cfly, nts 
dimension ul(nrows, *), u2(nrows, *) 

c 
c exchange boundary data 
c 

if (i~in.ne.l) out('west', iz, ixmin, iymin, ul(2, 2:nyloc+l)) 
if (ixmax.ne.nx) out('east', iz, ixmax, iymin, ul(nxloc+l, 2:nyloc+l) 
if (iymax.ne.ny) out('north', iz, ixmin, iymax, ul(2:nxloc+l, nyloc+l)) 
if (iymin.ne.l) out('south', iz, ixmin, iymin, ul(2:nxloc+l, 2)) 
if (ixmin.ne.l) in('east', iz, ixmin-l, iymin, ?ul(l, 2:nyloc+])) 
if (ixmax.ne.nx) in('west', iz, ixmax+l, iymin, ?ul(nxloc+2, 2:nyloc+l)) 
if (iymin.ne.l) in('north', iz, ixmin, iymin-l, ?ul(2:nxloc+l, I)) 
if (iymax.ne.ny) in('south', iz, ixmin, iymax+l, ?ul(2:nxloc+l, nyloc+2)) 

c 
c update solution 
c 

do ix = 2, nxloc + 1 
do iy = 2, nyloc + 1 

u2(ix, iy) = ul(ix, iy) + 
1 cflx * (ul(ix+l, iy) + ul(ix-l, iy) - 2.*ul(ix, iy)) + 
2 cfly * (ul(ix, iy+l) + ul(ix, iy-l) - 2.*ul(ix, iy)) 

enddo 
enddo 

c 
return 
end 

Fig. 3(b). Linda program ~agment (worker routines). 

neighboring subdomains. In most message-passing systems, a more complicated 
approach must be taken (unless the system has special library calls applicable to 
exactly this sort of mesh problem). For example, the master might tell each worker 
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who its neighbors are (by sending the process ids after all processes are created). 
Alternatively, each worker might compute the logical process numbers of its 
neighbors (based on a regular subdivision of the mesh), and then use some sort of 
mapping function to find out the process ids. In either case, the programmer would 
have to deal with details of the parallel system having nothing whatever to do with 
the application. 

One other  more subtle point in the process creation loop bears comment. The 
Linda operation that sets up each process also passes arguments to the subpro- 
gram executed by that process, just as if the subprogram were invoked in an 
ordinary manner  by a local calling routine. This can reduce the need for explicit 
data communication, of course, but it also means that the worker routine invoked 
remotely by means of e v a t can be identical to the worker routine invoked locally 
by the master. (In fact, it can exist in the same file as the master routine.) In 
message-passing systems, like PVM for example, the process creation mechanism 
actually invokes an entirely separate worker p r o g r a m ,  complete with some sort of 
main routine. This can make it more difficult to share code, and there will almost 
certainly be some code redundancy due to infrastructure repeated in the two 
programs. 

Following the creation of each worker, the master outs  the initial data for that 
worker's subdomain. Once again, we see repeated the theme of problem-related, 
not system-related, data identification. In this case, the initial data is identified not 
by the id of the receiving process, but by the indices of the mesh point at the lower 
left corner of the subdomain. Apart  from the naturalness of this sort of data 
identification, there is the additional advantage that the data is 'self-describing' in 
a way that enables a programmer to identify the data in the context of the problem 
merely by examining it (possibly using Tuplescope TM, SCIENTIFIC's visual debug- 
ger for Linda), without having to unpack and decipher it. 

Moreover, the handling of the initial data illustrates two other ways in which the 
fact that Linda is based on language-level processing pays off with enhanced 
expressiveness and conciseness. First, there is no need to gather into a single 
contiguous space the diverse data to be placed in tuple space; Linda handles this 
automatically by generating suitable copying routines at compile and link times, 
based on the use of the most efficient, machine-dependent,  copy operations 
available and targeting suitable machine-independent data formats (like XDR) if 
appropriate. This leads to a significant reduction in code size, means that the 
programmer is freed from the need to allocate and manage temporary space used 
solely for message buffers, and facilitates software portability. 

The o u t operation for the initial data also illustrates another Fortran-Linda 
extension of basic Fortran 77 syntax: the ability to use Fortran 90 array index 
syntax inside of Linda operations. This permits very concise specification of a 
scattered subarray of the initial data matrix in a way that is impossible with 
library-based tools. 

After  it has created all the workers, the master process itself calls the worker 
subroutine to carry out computations on the upper-rightmost subdomain. When all 
computation is complete, the master collects the results in a loop over all the 
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subdomains. Notice that the collection loop can accept the results in random 
order, rather than by process number or in some specific subdomain order. 

We now turn to the worker process illustrated in Fig. 3(b). The basic design for 
the worker process involves the use of two scratch arrays alternately to contain the 
old and new solution values. The first order of business for each worker is to copy 
the common block data and the initial solution data from tuple space. In this case, 
a r d operation is used for the common block, since the same tuple must be 
consulted by all workers. An i n operation is used to retrieve the initial data and 
place it into one of the scratch arrays. 

Following some initialization for those workers on the boundaries of the global 
mesh, each worker enters a loop over the number of timesteps to be computed. 
That  loop invokes the computational routine, s t e p, alternating the roles of the two 
scratch arrays as input and output arrays. 

The s t e p routine is quite simple, comprising a data exchange (communication) 
section and a local computation section. The data exchange section uses Linda o u t 
and in operations to place boundary data in tuple space and to retrieve the 
boundary data from neighboring subdomains. Notice once again that the data is 
self-describing, using index parameters natural in the context of the application. 
This contrasts with the need in message-passing systems to package each piece of 
the subdomain boundary into a message targeted for a specific processor. The 
computation section is, of course, quite straightforward, since it is identical to what 
would be included in any program for this application. 

We haven't included here a message-passing variant of our program fragment. 
However, message-passing implementations by others of similar methods (e.g. [17]) 
are more complicated and require more lines of code to deal with parallel issues 
irrelevant to the underlying sequential computation. More importantly, the mes- 
sage-passing implementations tend to be less natural, in the sense that they make 
substantial explicit use of system/archi tecture information (such as process ids and 
the like) in addition to problem-specific information. Together  these observations 
lead one to expect that the most frequent route to a parallel program - paralleliza- 
tion of an existing sequential program - should be much simpler with Linda than 
with message passing. This, in turn, should lead to significant cost savings due to 
reduced development time and increased software portability and reliability. 

In comparing Linda and message-passing systems, we need to keep sight of the 
fact that these systems have radically different designs and goals. Message-passing 
systems like PVM have successfully achieved a specific, pragmatic goal: support for 
a well-desigued, portable message passing service. Linda, on the other hand, is 
designed to play a more ambitious role - that of a high-level coordination 
language that is at the same time general, portable and efficient. Thus, within the 
parallel-programming domain, Linda is designed to support all of the basic 
paradigms of asynchronous parallelism, whereas message passing systems are 
well-suited to only some. In addition to programs of the type discussed in this 
section, Linda (as a language) supports many others, including those that rely 
heavily on distributed data structures (stored in tuple space), or that emerge from 
a result-driven dataflow paradigm. In practice, of course, physical communication 
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and process management may be too expensive on many current platforms or 
networks to fully exploit this expressiveness, but the capability is, important 
because it means that Linda can serve as a unifying environment for today's 
parallel applications and the ones that will be available in the future within 
highly-optimized environments providing cheap communication and process man- 
agement (cf. [20]). 

3.3 Implementation efficiency 

Linda is available on a wide range of parallel machines, including shared-mem- 
ory multiprocessors, distributed-memory parallel computers, and heterogeneous 
collections of networked workstations. Each Linda implementation involves three 
basic components: a language-dependent precompiler, a link-time optimizer, and a 
machine-dependent run-time library, which fit together to provide efficiency in 
each of these environments. 

As we noted earlier, the precompiler processes C-Linda or Fortran-Linda 
source code to produce pure C or Fortran modules in which the tuple space 
operations are replaced by calls to functions which will, in turn, invoke routines in 
the run-time library. (These intermediate functions are generated automatically 
during optimization at pre-link time.) The pure C or Fortran modules are then 
compiled using native compilers. In the course of this processing, the precompiler 
collects information about tuple space usage which is saved in a 'Linda object file' 
along with the base language (C or Fortran) object code. 

At link-time, the Linda prelinker analyzes all the tuple-space accesses used in 
the complete program and 'fills in' the bodies of the intermediate functions 
mentioned above. In essence, these functions are quite simple: they create and fill 
suitable data structures for the tuple data and invoke an appropriate pre-existing 
library routine. Once the intermediate functions have been compiled by the Linda 
system using native compilers, the standard system linker is used to produce the 
final executable. 

The prelinker is the real key to achieving run-time efficiency with Linda. One of 
its roles is to select the proper run-time library routines for the implementations of 
the tuple space operations. In SCIENTIFIC's systems, the run-time library is 
actually implemented as a polylibrary - that is, as a collection of families of 
run-time routines which can be used to implement different kinds of tuple space 
operations. While the Linda associative-matching protocol is very general, link-time 
analysis of data collected at compile time makes it possible to select the most 
appropriate member of the family applicable to each operation, thereby maximiz- 
ing run-time efficiency while maintaining exactly the minimal required amount of 
generality. 

In addition, the prelinker can use its complete knowledge of every tuple space 
access in the program to accomplish a good deal of 'proto-matching' at link time. 
A significant reduction in the cost of run-time searching can be achieved merely by 
exploiting the simple observation that an n-field template with a given type 
signature can only match an n-field tuple with matching types. However, it is 



N.J. Carriero et aL / Parallel Computing 20 (1994) 633-655 647 

possible to do even more, for example, by throwing out consistently-used constant 
fields (in other words, 'pre-matching' them), establishing whether or not run-time 
value matching is needed and, if it is, determining whether there is a search key 
(for a hash table, for example). For more details, see [12]. 

The goal of the compile- and link-time processing of a Linda program is to 
convert a program containing very general Linda statements into an executable 
that will run as efficiently as if the program had been written with much less 
general process interaction constructs. In the case of programs designed for a 
message-passing process-interaction model (such as the example from the last 
section), this means that the resulting Linda program should run as fast (or nearly 
so) as a well-written 'natural '  message-passing program. In addition to the opti- 
mizations already discussed, key to this efficiency are the run-time library routines. 

Linda run-time libraries are targeted to specific host platforms. On shared- 
memory multiprocessors, tuple space is (naturally) mapped to physically-shared 
memory, and library routines use efficient shared-memory operations. In this 
paper, we want to focus mainly on Linda's use on distributed-memory machines 
and workstation networks, since those are the principal domains in which message 
passing is used. While several techniques have been used to implement tuple 
spaces in such environments, the most successful were developed by Bjornson and 
are described in [1]. 

In all distributed-memory Linda implementations, each processor acts both as a 
computational server (computing fields from eva LS) and as a tuple space server, 
responsible for managing a particular disjoint section of tuple space. This dis- 
tributes both the computational load and the burden of handling Linda operations 
across all participating processors, and it allows tuple space to be accessed 
simultaneously by many processes. As described above, the compile- and link-time 
systems divide tuples and templates into classes based on the number of fields, the 
type signature, etc. At run time, each class is mapped to some participating 
processing node, which provides storage for all tuples and templates in that class - 
in principle, each tuple or template is sent, upon generation, to the node associ- 
ated with its class, and that node serves as a rendezvous point. Tuples wait there 
for matching templates, and vice versa. When a match occurs, the matched tuple is 
bundled off to the template's node of origin, and in that way a tuple generated by 
an o u t is delivered to a process that has executed a matching i n or r d. 

This basic scheme leads to the use of a three-message protocol for data 
movement at run-time, as shown in Fig. 4. When an o u t occurs, the computed 
tuple is sent to the responsible rendezvous node (Fig. 4(a)). For an i n or r d, the 
node performing the operation sends the template to the rendezvous node and 
blocks awaiting a response. The rendezvous node sends the matched tuple back as 
soon as one is available (Fig. 4(b)). 

A number of optimizations are used to make this basic scheme work well. First, 
some classes (those implemented as hash tables, for which there are search keys) 
may themselves be distributed over several nodes. Second, some tuple fields (in 
particular any large ones that play no role in tuple matching) aren't  sent to the 
rendezvous node, but remain on their nodes of origin until needed by a recipient 
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Fig. 4. Tuple processing in distr ibuted-memory Linda implementations.  

process (see Fig. 4(c)); this often substantially improves performance, since the 
large fields frequently consume most of the actual communication time. Third, 
broadcast operations may be used automatically by the run-time system to pre-dis- 
tribute tuples accessed by r d operations (on the assumption that many nodes will 
access such tuples). Finally, the class-to-rendezvous-node mapping may change 
dynamically at run-time in response to observed tuple traffic. For example, if one 
process consistently requests tuples from a given class (or subclass, in the case of 
classes implemented using hash tables), the rendezvous node for that class is 
reassigned to the recipient process's node. This last optimization has an important 
consequence: Linda applications that behave like message-passing programs at 
run-time - those which involve very stable and predictable communication pat- 
terns - will perform like message-passing programs at run-time. 

To conclude this discussion, we return briefly to the Fortran-Linda application 
of the last section. The real key to achieving high performance for that program is 
to make certain that the exchange of boundary data performs exactly like the 
message sending and receiving that it really is. Compile- and link-time analysis will 
lead Linda to use a distributed hash table implemention for the tuple classes used 
in the out and i n  operations of step. The hash keys will be derived from 
combinations of the non-constant fields that have actual values in both tuples and 
templates; in the cases at hand, these are the integer indices that are the second 
through fourth fields. At run time, the hash-table bins will be distributed initially 
at random, leading to a three-message communication protocol similar to that 
shown in Fig. 4. This is clearly less efficient than pure message passing, which 
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would involve only a single message. However, very rapidly (after three repetitions 
in current implementations), the run-time system will observe a static traffic 
pattern (since each hash key instance corresponds to data intended for a unique 
subdomain and, therefore, node). When this happens, those hash keys are removed 
from the standard hash table processing, and the corresponding rendezvous node 
is forced to the destination node. This leads to a single-message protocol. The 
dominant cost of satisfying the in requests then becomes the local memory-to- 
memory copy operations required to place the data into the proper  output 
locations. This cost should be no worse for Linda than for message-passing systems 
(which must unpack the message buffers). 

3.4 Performance results 

We turn now to some performance evaluation of Linda, and a comparison 
between it and various message-passing systems. We emphasize that, although we 
provide quantitative results, one should draw only qualitative conclusions, since all 
of the systems discussed are undergoing constant improvement, and actual timings 
may depend somewhat on local hardware or software system configuration issues. 
Moreover, as we noted earlier, the Linda performance results described here 
represent only the performance of SCIENTIFIC's  commercial Linda systems; 
other Linda-like systems may not use similar optimizations, so their performance 
may differ substantially. 

In an absolute sense, Linda performance really depends on two separate issues: 
the effectiveness of the tuple classification strategies in reducing or eliminating 
expensive searches in tuple space, and the efficiency of the machine-dependent 
implementations of data transfer. We focus here mainly on the latter issue, though 
we note that Bjornson [1] has performed extensive studies quantifying the amount 
of searching. He concluded that over a number of different applications and 
problem sizes, Linda's compile- and link-time analysis and optimization were so 
effective that the cost of 'searching' was insignificant - in most cases, in fact, the 
first tuple examined (as a candidate match for a template) was the correct one. 
That tells us that, at least for SCIENTIFIC's  systems, the quality of Linda 
performance will depend primarily on the degree to which the run-time system can 
avoid extra messages (relative to message-passing systems) and exploit the underly- 
ing low-level communication system. 

To begin we will address performance on networks, comparing SCIENTIFIC's  
Network Linda System to PVM, a high-quality representative of portable 
message-passing systems. For a variety of reasons, including the issue of system 
evolution mentioned above, it is particularly difficult to assess quantitatively the 
relative performance of these two systems. For example, there are a number of 
algorithms (such as those involving dynamic load balancing, to name one class) that 
are easy to implement efficiently in Linda, but that may be difficult to implement 
in PVM. Moreover, PVM itself incorporates at least two different message-passing 
implementations (pvm_send I pvm_recv,  pvm_vsndlpvm_vrcv)  that have differ- 
ing performance characteristics, and it is unclear which one to use for fair 
comparisons. 
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Table 1 
PVM/Linda communication time comparisons (ping-pong test) 

Message size PVM time Network Linda time 
(bytes) (msec) (msec) 

100 5.7 7.9 
1,000 9.2 10.9 

10,000 42.5 53.6 
100,000 356.3 389.1 

1,000,000 3,479.3 3,711.5 

Noting all this, and bearing in mind that our goal here is to understand 
performance for algorithms to which Linda and PVM are equally applicable, we 
will present only results from two rather limited examples. Our comparisons used 
Version 2.5 of the Network Linda System and Version 2.4.0 and 2.4.1 of PVM, 
since those are the most widely distributed at the time of this writing. Somewhat 
newer versions now available might offer some quantitative improvements, but the 
qualitative conclusions would most likely stay the same. 3 

Our first example is a two-node 'ping-pong'  program designed to study commu- 
nication costs in Linda and PVM on a dedicated ethernet network. The ping-pong 
program contains two processes which pass a single message ' token'  back and forth 
100 times (that is, there are 200 actual messages). The fact that only two nodes are 
involved potentially hides significant issues related to scalability - for example, the 
program uses the p v m_v s n d [ p v m_v r c v operations in PVM which may not scale to 
large networks due to Unix limitations on socket usage. However, the results do 
provide an indication of the underlying communication overheads in the two 
systems, independent of such hard-to-predict issues as network contention and the 
like. (We should note that the more scalable pvm_sendlPvm_recv paradigm in 
PVM suffered a factor  of  two pe r fo rmance  degrada t ion  over the 
pvm_vsnd [ pvm_vrcv paradigm.) 

The results in Table 1, originally reported by Douglas, Mattson, and Schultz 
[18], show the average time in milliseconds for a single roundtrip as a function of 
message size. They were obtained using Sun SPARCstation 1 workstations on an 
isolated ethernet network. The programs were written in C using version 2.5 of the 
Network Linda System and version 2.4.1 of PVM. In a sense, these numbers 
represent a worst case for the two systems, since there is no computation to dilute 
any of the communication cost. (Real programs that make sense to run on 
networks typically spend only a small amount of time communicating, so even a 
large increase in the pure communication time represents only a small portion of 
total wallclock execution time.) However, the results shown in Table 1 show that 
the Linda and PVM times are within 10-20% in most cases. 4 

3 The current version of the Network Linda System is Version 2.5.2, and the current version of PVM is 
Version 3.1. Dr. A. Geist (private communication) has indicated that performance in the new version of 
PVM should be comparable to that reported here. 
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Table 2 
PVM/Linda wallclock time comparisons (Cap & Strumpen data) 

651 

Number of PVM wallclock Linda wallclock 
processors time (sec) time (sec) 

1 1,370.6 1,370.6 
2 648.0 662.2 
4 328.0 342.6 
8 168.4 175.8 

16 90.0 92.8 
32 54.0 54.0 
38 54.0 51.3 

A more  useful  compar i son  be tween  L inda  and  P V M on networks can be 
ob ta ined  by looking at the total  wallclock execut ion t ime of specific applicat ions.  
The  par t icular  appl icat ion we' l l  examine  is the solut ion of a heat  conduc t ion  
equa t ion  on a two-dimens ional  grid using str ip-based domain  decomposi t ion  - a 
computa t ion  similar to our  earl ier  t i le-based example,  bu t  using a somewhat  
s impler  set of subdomains .  Since the results represen t  work done  by others,  we will 
not  focus on the details, bu t  will ins tead p resen t  compar isons  that  indicate  the 

roughly-equal  pe r fo rmance  of Linda  and  PVM. Tha t  is, after all, exactly what  one  
would hope for - a high-level pa rad igm (Linda)  per forming  to the same s tandard  
as a we l l - implemented  message-pass ing system (PVM). The  p rogram was wri t ten  
by Cap and  S t r u m p e n  [10], f rom whom we have ob ta ined  the data  repor ted  in 
Table  2. The i r  algori thmic approach was based on a data  paral lel  scheme des igned 
specifically to cater  to some degree of he te rogene i ty  in the ne tworked  workstat ions  
(in their  case a mixture of various Sun  SPARCsta t ions) .  The  repor ted  results are 
wallclock t imes using C with PVM 2.4.0 and  Network  C-Linda  vers ion 2.5.0. 5 We 

see that  the combina t ion  of L inda  opt imizat ions  descr ibed above (part icularly the 
run- t ime  reass ignment  of rendezvous  nodes)  is capable  of achieving Linda  perfor-  
mance  comparab le  to that  of message passing systems. 

The  Cap and  S t rumpen  example is not  un ique  in the P D E  area. Compara t ive  
results for the Shallow Wate r  Equa t ions  (also using str ip-based decomposi t ion)  

4 For small message sizes, the difference seems to be due to some data management overhead and, to a 
lesser extent, Linda's need to send a few extra messages involving the rendezvous node. For large 
message sizes, the difference appears related to Linda's use of UDP and PVM's use of TCP. We note, 
however, that Douglas, Mattson, and Schultz [18] report that PVM performance deteriorates badly for 
large message sizes in other tests run on a four-node network. 
5 The times for 1-16 processors were obtained on a homogeneous SPARCstation 1 network. The 
32-processor network included 23 SPARCstation 1 workstations, 8 SPARCstation 1 + workstations and 
one SPARCstation 2. The 38-processor network added 3 additional SPARCstation 2 workstations, two 
SPARCserver 490s, and a SPARCserver 390. Cap and Strumpen also compared PVM and Linda to 
their own special-purpose system PARFORM. Essentially, all three showed equal performance (within 
approximately 5%). The results using SCIENTIFIC's Network Linda System were obtained with the 
assistance of Mr. David Kaminsky and his colleagues at Yale University. 
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Table 3 
EUI/Linda SP1 wallclock time comparisons (single token ring tests for 10 processors) 

Token size Linda results EUI results 

(bytes) Time (msec) Throughput (Mb) Time (msec) Throughput (Mb) 

1 1.58 0.00063 0.31 0.0032 
4096 2.48 1.65 1.28 3.21 
8192 3.51 2.34 1.92 4.28 

16384 5.57 2.94 3.13 5.23 
65536 14.69 4.46 10.18 6.44 

262144 46.11 5.69 39.05 6.71 
1048576 172.35 6.08 149.33 7.02 

have been reported by Deshpande and Schultz [17], and they, too, found roughly 
similar performance for Linda and PVM versions on local area networks. 

We and others have also looked at Linda performance on more scalable 
architectures, and we examine here some communication tests from recent work 
on the IBM 9076 SP1 computer, a new distributed memory machine that includes 
a scalable communication switch. SCIENTIFIC has developed a machine-specific 
version of Linda for the SP1 that is specifically designed to achieve high through- 
put for large tuples, and We report  some preliminary results for two ring-communi- 
cation programs in Tables 3 and 4. In the first program, a single tuple of varying 
size is passed around a logical ring of p processors; while, in the second, p such 
tokens are passed around a p-processor ring. The Linda version, using Linda's o u t 
and i n operations, was compared against a version using IBM's native EUI 
message-passing commands. Both versions were run on an SP1 under IBM's POE 
(Parallel Operating Environment) system. In each case, the tables report both the 
time (in milliseconds) per single token transfer (including both o u t and in for 
Linda) and the corresponding throughput (in megabytes per second). Note that in 
the multi-token test, the aggregate throughput is p times the reported number. 

The SP1 results indicate that Linda performance is qualitatively similar to that 
of IBM's native message-passing environment, particularly insofar as throughput 
for reasonably large data sizes is concerned. (For many real applications, for 

Table 4 
EUI/Linda SP1 wallclock time comparisons (multi-token ring tests for 10 processors) 

Token size Linda results EUI results 

(bytes) Time (msec) Throughput (Mb) Time (msec) Throughput (Mb) 

1 2.43 0.00041 1.22 0.00082 
4096 6.00 0.68 7.41 0.55 
8192 8.88 0.92 8.24 0.99 

16384 14.54 1.13 12.84 1.28 
65536 34.95 1.88 32.98 1.99 

262144 104.08 2.52 115.43 2.27 
1048576 396.64 2.64 454.66 2.31 



N.J. Carriero et al. / Parallel Computing 20 (1994) 633-655 

Table 5 
Hypercube native/Linda wallclock time comparisons (Deshpande and Schultz data) 
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Number of 
processors 

iPSC/2 wallclock times (sec) iPSC/860 wallclock times (sec) 

Linda NX/2  Linda NX/860 

4 - 280.1 276.2 
8 864.6 857.1 144.2 141.1 

16 437.2 432.0 69.1 66.9 
32 227.4 222.9 37.2 35.0 
64 116.7 112.8 19.8 17.7 

example, in fields like seismic processing, typical data sizes are in excess of a 
megabyte, so small-data-size latency is relatively unimportant.) We note that 
Linda's latency for small data sizes is significantly larger than that with EUI, due 
to the particular design of the current Linda system on the SP1. Further research 
and development, now under way, is expected to reduce the latency difference. 

Turning finally to application performance on distributed memory machines, we 
will look at two sets of results. First, the work of Deshpande and Schultz discussed 
above also examined performance for the Shallow Water  Equations in other 
settings, including the use of tile-based decompositions on distributed memory 
machines from Intel. It is interesting to note that they observed that Linda 
achieved better  than 90% of message-passing performance (using native Intel 
message-passing libraries), even though a relatively small problem was used (a 
512 x 512 grid on up to 64 processors). Their  results for 200 time steps on a 
512 x 512 grid are summarized in Table 5. 

Our last performance results are for two-dimensional FFTs on the Intel ma- 
chines, and are based on work reported by Segall [26]. Segall developed codes 
using both C-Linda and native Intel message-passing libraries, and studied the 
question of what percent of native-code performance was achieved by the Linda 
codes. He found that the C-Linda version 'asymptotically approached the perfor- 
mance of the [optimized native] version as the matrix dimension [problem size] 
increased. It came to within a few percent for matrix sizes that are commonly 
encountered in practice.' Segall went on to note that the ratio of computation 
speed to communication speed made Linda performance relatively better  on the 
iPSC/2  than on the iPSC/860, but Linda performance was well above 90% of 
native (optimized) message-passing performance for matrices of size 1024, even on 
64 processors of the iPSC/860. 

4. Concluding remarks 

In this paper we have discussed the Linda model for parallel computing and 
compared it to message-passing models, both qualitatively and quantitatively. What 
we have seen is that Linda is a higher-level, more expressive and general approach, 
and that it is able to achieve run-time performance that is quite similar to that of 
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message passing. It is also significant that the Linda model has been very success- 
ful for real computations. While we do not have space here to provide details, we 
can say that Linda systems have been used widely for a diverse set of applications 
(cf. [3,11]), specifically including, for example, financial analytics [8,9,23], petroleum 
applications [5,6,27,28], electronic device design [7], and ray tracing [4,22]. In the 
near future, we expect to see the release of commercial-quality applications in 
these fields and others like computational chemistry and electronic chip design. 

As important as current performance and usage may be, we think it is at least as 
important to focus on the future. For Linda it is clear that the future will include 
support for highly adaptive network computation in which processors enter and 
leave computations dynamically based on individual priority scheduling and for the 
development of hierarchical, heterogeneous systems (involving tuple spaces shared 
between independent parallel applications, for example). Already SCIENTIFIC's  
released Network Linda System supports the 'piranha model'  in which programs 
make use of an adaptive master-worker paradigm for parallel computing (cf. 
[13,19,21]) that responds dynamically to workstation availability constraints. Under 
development is support for 'open tuple spaces' ([16]) that can be shared among 
different programs. Open tuple spaces will be used to build coherent applications 
on very heterogeneous mixtures of machines (hypercubes and workstations, or 
different SIMD machines, for instance) and for machines which are themselves 
heterogeneous (the Convex META, for example). They will also support multidis- 
ciplinary applications (such as combinations of PDE solvers with visualization 
programs) by providing a persistent shared memory resource (much like a file 
system, but with Linda semantics and much higher performance). 
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