
Three significant trends have under-
scored the central role of concurrency
in computing. First, there is in-
creased use of interacting processes
by individual users, for example, ap-
plication programs running on X
windows. Second, workstation net-
works have become a cost-effective

CONCURRENT
OBJECT-ORIENTED

mechanism for resource sharing and
distributed problem solving. For ex-
ample, loosely coupled problems,
such as finding all the factors of large
prime numbers, have been solved by
utilizing ideal cycles on networks of
hundreds of workstations. A loosely
coupled problem is one which can be
easily partitioned into many smaller
subproblems so that interactions
between the subproblems is quite limited. Finally, multiprocessor tech-

CCYY”NlCITlCYICCT”EACCY/September 199O/Vol.33, No.9 125

I I I

nology has advanced to the point of
providing supercomputing power at
a fraction of the traditional cost.

At the same time, software engi-
neering considerations such as the
need for data abstraction to promote
program modularity underlie the
rapid acceptance: of object-oriented
programming methodology. By sep-
arating the specification of what is
done (the abstraction) from how it is
done (the imjhwrltation), the concept
of objects provides modularity neces-
sary for programming in the large. It
turns out that concurrency is a nat-
ural consequence of the concept of
objects. In fact Simula, the first
object-oriented language, simulated
a simple form of concurrency using
coroutines on conventional architec-
tures. Current development of con-
current object-oriented programming
(COOP) is providing a solid software
foundation for concurrent comput-
ing on multiprocessors, Future gen-
eration computing systems are likely
to be based on the foundations being
developed by this emerging software
technology.

The goal of this article is to discuss
the foundations and methodology of
COOP. Concurrency) refers to the poten-
tially parallel exe:cution of parts of a
computation. In a concurrent com-
putation, the components of a pro-
gram may be executed sequentially,
or they may be executed in parallel.
Concurrency provides us with the
flexibility to interleave the execution
of components of a program on a
single processor, or to distribute it
among several processors. Concur-
rency abstracts away some of the
details in an execution, allowing us to
concentrate on conceptual issues
without having to be concerned with
a particular order of execution which
may result from the quirks of a given
system.

Objects can be defined as entities
which encapsula.te data and opera-
tions into a single computational
unit. Object models differ in how the
internal behavior of objects is
specified. Further, models of concur-
rent computation based on objects
must specify how the objects interact,
and different design concerns have

I I I

led to different models of com-
munication between objects. Object-
oriented programming builds on the
concepts of objects by supporting
patterns of reuse and classification,
for example, through the use of in-
heritance which allows all instances
of a particular class to share the same
method.

In the following section, we outline
some common patterns of concur-
rent problem solving. These patterns
can be easily expressed in terms of
the rich variety of structures provid-
ed by COOP. In particular, we dis-
cuss the actor model as a framework
for concurrent systems’ and some
concepts which are useful in building
actor systems. We will then describe
some other models of objects and
their relation to the actor model
along with novel techniques for sup-
porting reusability and modularity in
concurrent object-oriented program-
ming. The last section briefly out-
lines some major on-going projects in
COOP.

It is important to note that the ac-
tor languages give special emphasis
to developing flexible program struc-
tures which simplify reasoning about
programs. By reasoning we do not
narrowly restrict ourselves to the
problem of program verification-
an important program of research
whose direct practical utility has yet
to be established. Rather our interest
is in the ability to understand the
properties of software because of
clarity in the structure of the code.
Such an understanding may be
gained by reasoning either infor-
mally or formally about programs.
The ease with which we can carry out
such reasoning is aided by two fac-
tors: by modularity in code which is
the result of the ability to separate
design concerns, and by the ability to
abstract program structures which
occur repeatedly. In particular, be-
cause of their flexible structure, actor
languages are particularly well-suited

IThe term Actor was introduced by Carl Hewitt at
MIT in the early 1970s to describe the concept of
reasoning agents. It has been refkd over the years
into a model of concurrency. It should be noted that
our use of the term bears no relation to the languqe
Actor-the latter being a commercial product in-
troduced in the late 1980s.

I I I I I

to rapid prototyping applications.

Patterns oi Concurrent
Problem Solvlng
Three common patterns of parallel-
ism in problems have been found in
practice (For example, see [8, 131).
First, pipeline concurrency involves the
enumeration of potential solutions
and the concurrent testing of these
solutions as they are enumerated.
Second, divide and conquer concur-
rency involves the concurrent elabo-
ration of different subproblems and
the joining of (some or all) of their
solutions in order to obtain a solution
to the overall problem. In divide and
conquer concurrency, there is no in-
teraction between the procedures
solving the subproblems. A third pat-
tern can be characterized as cooperative
probh-solving Cooperative problem-
solving involves a dynamic complex
interconnection network. As each
object carries out its own computa-
tional process, it may communicate
with other objects, for example, to
share the intermediate results it has
computed. An example of this kind
of a system is a simulation where the
physical objects are represented by
logical (computational) objects.

Consider some canonical exam-
ples illustrating different patterns of
parallelism. A simple example of
pipeline concurrency is the prime
sieve. To generate all the prime
numbers, one could generate all
numbers and remove multiples of
2357 I , I I-**, up to the largest prime
computed thus far. As soon as a
number is identified as prime, it is
added to the sieve and numbers are
also eliminated by testing for divisi-
bility by this prime (see Figure 1).

The earlier stages of this particular
pipeline are a bottleneck because
many more numbers are divisible by
smaller primes. The linear pipeline
can be improved by changing it to a
tree with the numbers sent to dif-
ferent identically behaving objects,
each testing for divisibility by a given
(low) prime, and then merging the
results. This can be achieved by us-
ing demand-driven evaluation which
dynamically creates context objects
to filter the numbers for divisibility of

126 September 19901Vo1.33,No.9ICOYYUNICITlONSOFT"EICY

I I I I I I I I I I I I I I I 111111111~ OBlBCT-OBlBN7BD DESIDN

the primes below it. Specifically, each
number can create its own copies of
the elements of the sieve as it goes
along. This scheme provides tree
pipelining for testing divisibility.

It should be observed that because
a large number of unnecessary tests
are performed, the technique of gen-
erating all numbers and then filter-
ing is quite inefficient in the first
place. An improved version would
avoid generating multiples of the low
primes, 2,3,5,.. (up to some prime).
Athas describes the behavior of an
algorithm designed precisely to do
this [7].

Divide-and-conquer concurrency
algorithms can often be expressed as
functions. Arguments to a function
are evaluated concurrently and their
values collected to determine the foal
result. Consider the problem of de-
termining the product of a list of
numbers [4]. We can represent the
list as a tree as in Figure 2. The prob-
lem can be recursively subdivided
into the problem of multiplying two
sublists, each of which is concur-
rently evaluated, and their results are
multiplied (see Figure 3). The prod-

FlCURE q. A S/mp/e /W/me Sieve.
Numbers generated and successively tested
for dlvlsiblllty by a linear plpellne of primes.
The circled numbers represent numbers
which are being generated. The boxed
ItUmbWS are ellmlnatlng numbers which are
not prime. New primes are added at the end
of the sieve.

FIGURE 2. A list of numbers to be
multiplied. The numbers are represented as
leaves of a tree.

FBGURE 3. The code for multlplylng a
list of numbers represented as a tree. In the
above code, a tree Is passed to tree-product
which tests to see If the tree Is a number
(I.e. a singleton). If so It returns the tree,
otherwise It subdlvldes the problem Into two
reCUrSlIfe Calls. left-tree and right-tree
are functions which pick off the left and
right branches of the tree. Note that the
arguments to * may be evaluated concurrently.

FicuRE 4. A pictorial representation
of the behavior of an actor. when the actor
processes the nn communlcatlon, It deter-
mines the behavior which will be used to
process the n +I” communlcatlon. The mall
address of the actor remains Invariant. The
actor may alS0 Send communlcatlons to
specific target actors and create new actors.

Sieve) 2 3 5 7 I I

(define tree-product
(lambda [tree]

(if (number? tree)
tree
(’ (tree-product (left-tree tree))
(* (tree-product (right-tree tree))))))

mail

1 2 n n+l

queue I
. . .

I I

X” -_
-* Xn+l

creates tasks,/
dj
’ \

\ t I
cl task

\
\

L specifies replacement

\,creates actors

k 1

mail queue I
. . .

COMY”WlC*TIOWIOFT”E~.C~/Septe”,bcr 199o/vo1.33, No.9

I I I

uct is then returned. The tree prod-
uct program in Figure 3 looks very
much like code in Lisp or Scheme ex-
cept that the evaluation strategy is
maximally concurrent.

In cooperative problem solving
concurrency, intermediate results are
stored in objects and shared by pass-
ing messages between objects. Simu-
lation programs, where a logical
object represents a physical object, is
one application of this kind of con-
currency. For example, the dynamic
evolution of the paths of a number of
bodies under the influence of each
others’ gravitational fields can be
modeled as systems of cooperating
objects. Another example of coopera-
tive problem solving is blackboard
systems which allow collaboration
between agents through a shared
work space. In an object-based sys-
tem, the blackboard and the agents
may be represented as systems of
objects.

The ACtOr MOdeI
A common semantic approach to
modeling objects is to view the
behavior of objects as functions of in-
coming communications. This is the
approach taken in the actor model
[21]. Actors are self-contained, in-
teractive, independent components
of a computing system that com-
municate by asynchronous message
passing. The ba.sic actor primitives
are (see Figure 4):

create: creating an actor from a
behavior description and a set of
parameters, possibly including ex-
isting actors;

send to : sending a message to an ac-
tor; and

become: an actor replacing its own
behavior by a new behavior.

These primitives form a simple
but powerful set upon which to build
a wide range of higher-level abstrac-
tions and concurrent programming
paradigms [3]. The actor creation
primitive is to concurrent program-
ming what the definition of a lambda
abstraction is to sequential program-

I I I

ming (For example, see [l]): it ex-
tends the dynamic resource creation
capability provided by function
abstractions to concurrent computa-
tion. The become primitive gives ac-
tors a history-sensitive behavior
necessary for shared mutable data
objects. This is in contrast to a purely
functional programming model and
generalizes the Lisp/Scheme/ML se-
quential style sharing to concurrent
computation. The send to primitive
is the asynchronous analog of func-
tion application. It is the basic com-
munication primitive causing a
message to be put in an actor’s mail-
box (message queue). It should be
noted that each actor has a unique
mail address determined at the time
of its creation. This address is used to
specify the recipient (target) of a
message.

In the actor model, state change is
specified using replacement behav-
iors. Each time an actor processes a
communication, it also computes its
behavior in response to the next
communication it may process. The
replacement behavior for a purely
functional actor is identical to the
original behavior. In other cases, the
behavior may change. The change in
the behavior may represent a simple
change of state variables, such as
change in the balance of an account,
or it may represent changes in the
operations (methods) which are car-
ried out in response to messages.

The ability to specify a replace-
ment behavior retains an important
advantage over conventional assign-
ment statements: assignments to a
variable fix the level of granularity at
which one must analyze a system. By
contrast, the replacement mecha-
nism allows one to aggregate changes
and avoid unnecessary control flow
dependencies within computational
units which are defined by reception&s
[2]. Replacement is a serialization
mechanism which supports a trivial
pipelining of the replacement ac-
tions: the aggregation of changes al-
lows an easy determination of when
we have finished computing the state
of an actor and are ready to take the
next action. For example, suppose a
bank account actor accepts a with-

I I I I

drawal request. In response, as soon
as it has computed the new balance
in the account, it is free to process the
next request-even if other actions
implied by the withdrawal request
are still being carried out. To put it
another way, the concurrent specifi-
cation of replacement behaviors
guarantees noninterference of state
changes with potentially numerous
threads running through an actor
under a multiple-readers, single-
writer constraint.

Concurrent computations can be
visualized in terms of event diagrams
(see Figure 5). These diagrams were
developed to model the behavior of
actor systems. Each vertical line,
called a &line, represents all the com-
munications received by a given ac-
tor. The receipt of a communication
represents one kind of event. Another
kind of event is the creation of a new
actor represented by an open arc on
the top of a lifeline. Connections be-
tween lifelines represent causal con-
nections between events. Pending
events, representing communica-
tions which have been sent but not
received, may be represented by ac-
tivation lines whose arrows note the
message and the target.

Control Structures
Concurrent control structures repre-
sent particular patterns of message
passing. Consider the classic exam-
ple of a recursive control structure
which illustrates the use of customers
in implementing continuations. The
example is adapted from [14] which
provided the original insight ex-
ploited here. In a sequential lan-
guage, a recursive formula is
implemented using a stack of activa-
tions. There is no mechanism in the
sequential structure for distributing
the work of computing a factorial or
concurrently processing more than
one request.

Our implementation of the factor-
ial actor relies on creating a customer
which waits for the appropriate com-
munication, in this case from the fac-
torial actor itself. The factorial actor
is free to concurrently process the
next communication. We assume
that a communication to a factorial

128 September1990/Vo1.33, No.9/COYYUNICATIOWSOFT"E~CW

I I I I I I I I I I I I I I I I llllllsI- OUECT-OB1ENTED DDSIDN

includes a mail address to which the
value of the factorial is to be sent. In
response to a communication with a
non-zero integer n, the actor with the
above behavior will do the following:
l Create an actor whose behavior

will be to multiply n with an integer
it receives and send the reply to the
mail address to which the factorial
of n was to be sent.

l Send itself the “request” to
evaluate the factorial of n - 1 and
send the value to the customer it
created.
One can intuitively see why the

factorial actor behaves correctly, and
can use induction to prove that it
does so. Provided the customer is sent
the correct value of the factorial of
n-l, the customer will correctly
evaluate the factorial of n. Moreover,
the evaluation of one factorial does
not have to be completed before the
next request is processed; (i.e., the
factorial actor can be a shared re-
source concurrently evaluating sev-
eral requests). The behavior of the
factorial actor in response to a single
initial request is shown in Figure 6.

This particular function is not very
complicated, with the consequence
that the behavior of the customer is
also quite simple. In general, the
behavior of the customer can be ar-
bitrarily complex. The actor origin-
ally receiving the request delegates

FIGURE 5. Actor event diagrams pro-
vide an abstract view of computation in a
concurrent system. An actor is identified
with a vertical line which represents the
linear arrival order of communications sent
to that actor. in the above diagram, I, and
k, represent two communications sent to
the actor 0. The communication k, arrives
before L,. in response to processing a com-
munication, new actors may be created
(dashed lines) and different actors may be
sent communications (solid lines) which will
arrive at their target after an arbitrary but
finite delay. The bon represents a COmmUni-
cation which has been sent but not yet
processed.

elcu~~ 6. A recursive factor/al coor-
putation. The computation is in response
to a request to evaluate the factorial of 3.
Eath actor is denoted by a mail address and
a behavior. The W’S represent the behavior
of the dvnamicaiiv created customers. For
euampie, the behavior vt3,cl sends I3*kl to
the mail address c in response to the com-
munication k.

most of the processing required by portion to the magnitude of the com-
the request to a large number of ac- putation required.
tors, each of whom is dynamically There is nothing inherently con-
created. Furthermore, the number of current in the recursive algorithm to
such actors created is in direct pro- evaluate a factorial. Using the algo-

I\
sends communications

(m, W3d
f

El

:kll

factorial

(m:*C% ml) /

(m:$(l, m’
6

actors

[3,cl

>

>

[2, ml

U,m’l

>
[O, m” 1

129

I II I

rithm in Figure 6, computation of a
single factorial would not be any
faster if it were clone using an actor
language as opposed to a sequential
language. All we have done is repre-
sent the stack for recursion as a chain
of customers. However, given a net-
work of processors, an actor-based
language could process a large num-
ber of requests much faster by simply
distributing the actors it creates
among these processors. The factor-
ial actor itself would not be as much
of a bott1enec.k for such com-
putations.

Patterns of communications re-
presented in recursion, iteration,
divide and conquer, etc., can be
abstracted into linguistic forms
which automatically coordinate in-
dependent computations. An impor-
tant service provided by high-level
actor languages such as Acore [20] is
the generation and coordination of
customers which are actors provided in
a request message. A customer can
be sent a reply message when a request
is completed, or a complaint message
if it is not possible to successfully
complete the reqluest.

History-Sensitive
Behavior
Often it is necessary for an actor to
change its local state and to respond
to more than one kind of message.
For example, a bank account changes
its behavior in response to processing
an incoming deposit or withdrawal
message. In order to define these
kinds of actors, a form called mutable
is provided in the Rosette actor
language developed at MCC by
Tomlinson and others in collabora-
tion with the author. The mutable
form is used to defme a generator ac-
tor which creates actors using a
behavioral template.

The behavior of a simple bank ac-
count may be defined using a mut-
able expression (see Figure 7). The
generator actor that results from the
mutable expression is bound to the
symbol Bar&Account. The generator
allows creation of instances via a
create expression. Following the key-
word mutable is a sequence of iden-
tifiers for the state variables of an

I I I

instance of Bat&Account. In this case
there is just a single state variable,
balance. The methods or communi-
cation handlers associated with a
BankAccount follow. A method is
specified by listing a keyword repre-
senting the operation to be executed
by the method, followed by a table
that represents the content of the re-
quest message (in this case a with-
draw-from message must specify an
amount), and a body that defines
how such messages are to be process-
ed. When used within the body of a
mutable generator, the form become
is used to specify the replacement
behavior of the instance of an actor
created using the generator-the
generator itself does not change.

A new BankAccount may be
generated with an initial balance of
1000 by using the create operation as
follows:

(definemy-account
(create
BankAccountlOOO))

We can make the communication
handles (the keywords determining
which method is to be performed)
visible by declaring them to be opera-
tions. The behavior of an operation
is to send to its first argument a mes-
sage containing itself and the rest of
the arguments it received. This
allows object-oriented message-
passing style and functional styles to
be freely mixed in an actor language.
The two styles serve as duals of each
other.

Requests may be issued to the new
account by using the methods that
are declared as operations:

(deposit-tomy-account lOO)
* 'deposited100

(withdraw-frommy-account78)
* 'withdrew 78

Subexpressions are evaluated con-
currently. Thus, the computation of
a replacement behavior, done by the
become command, is concurrent
with the computation of a response.
The capability to access the account
may be passed to another actor,
dynamically reconfiguring a system;

I I I I I

for example:

(send-tomy-wifemy-account)

would allow the actor whose mail ad-
dress is bound to my-wife to access
theactor my-account.

Joln Contlnuatlons
Divide and conquer concurrency
can often be naturally expressed by
using a functional form which eval-
uates its arguments concurrently.
Implementation of such forms re-
quires the specification of a join
continuation which synchronizes the
evaluation of the different argu-
ments. For example, the tree-
product program given in Figure 3
can be expressed in terms of actor
primitives as shown in Figure 8.

The form (bar foo) represents an
asynchronous message foo sent to
bar. The form [xl x2. . .]
represents a data constructor whose
elements xl, x2, . . . are concur-
rently evaluated. It should be noted
that the two tree products in the do
body are also concurrently evaluated
and their values are sent to new-
cust, where new-cust is a history-
sensitive actor whose role is to store
the first value it receives and multi-
ply the stored number with the sec-
ond number it receives in order to
produce the final response that is sent
to the customer which was specified
at the time of its first invocation. The
form rlambda defines actors rather
than actor behaviors (which are de-
fined by mutable). In the body of an
rlambda, become specifies the re-
placement behavior of the actor itself.
Thus rlambda is the actor analogue
of lambda; it captures the history-
sensitive behavior of an actor using
the form become. Note that in join-
cant, vl refers to the first message
received by the actor-which could
correspond to either the product of
the left subtree or the right subtree.

The behavior of tree-product is
shown in terms of an event diagram
in Figure 9. When the tree-product
actor receives a list represented as a
tree containing ltree as its left subtree
and rtree as its right subtree, it
creates a customer, called a join con-
tinuation, which awaits the computa-

130

I I I I I I I I I I I I I I I 1111111m1- OWDCT-O8XENTEDDEEIQ~

tion of the products of each of the two
subtrees. The join continuation then
proceeds to multiply the two num-
bers and send the result to the orig-
inal requester. Because multiplication
is commutative, we need not be con-
cerned about matching the responses
to the order of the parameters. If we
were dealing with an operator which
was not commutative, we would need
to tag the message corresponding to
each argument and this tag would be
returned with the response from the
corresponding subcomputation. The
replacement behavior of the join con-
tinuation would then depend on the
order in which the results of the eval-
uation of arguments were received.
Because the semantics of concur-
rency requires that the evaluation of
the two invocations of tree-product
be indeterminate, the behavior of
join-cant cannot be expressed func-
tionally-despite the fact that the
behavior of tree-product itself is
functional.

In Figure 9, we provide the be-
havior of the history-sensitive join
continuation explicitly. The advan-
tage of explicit join continuations is
that they provide considerable flexi-
bility-they can be used to control
the evaluation order, to do partial

FIGURE 7. A 8allk aCCt?Ullt. Tile
behavior of a bank account Is described In
oblectorlented terms using communication
handlers (methods). The behavior Is history
sensitive: each time a balance query is
made, a different response may be given by
the bank account.

FIGURE 8. The tree-product ill tWlRS
of primitive actors. The behavior of the
dynamically creation loln continuation IS
expllcltly shown. we use the form rlambda
to lndlcate the definition of an actor which
may have a replacement behavlor. The form
d0 Is used to simply evaluate the two
arguments concurrently.

FIGURE 9. rreeproducteventd
The skeleton of actions taken bv the tree pro-
duct In response to a message contalnlng the
tree T= [ltree rtree] and the customer C.

FIGURE 10. A joln contlnuatlon which
reacts appropriately to partial tompu-
tatlons as they are completed. Note that
error? Is an actor which returns a true or
false value depending on whether the
argument It receives Is “acceptable.”

computations, and to do dynamic er- of evaluating the other subtree [4].
ror handling. For example, if the Furthermore, we may want to flag er-
number 0 is encountered, the join ror conditions such as data excep-
continuation can immediately return tions. If we require, for example, that
a O-without waiting for the results all the numbers in the tree be positive

(define BankAccount
(mutable palance]

[withdraw-from [amount]
(become BankAccount (-balance amount))
(return ‘withdrew amount)]

[deposit-to [amount]
(become Bar&Account (+ balance amount))
(return ‘deposited amount)]

[balance-query
(return ‘balance-is balance)]))

(define tree-product
(rlambda [tree customer]

(if (number? tree)
(customer tree)
(let [newcust (join-cant customer)]

(do (tree-product (left-tree tree) new-cust)
(do (tree-product (right-tree tree) new-cust))))))

(define join-cant [custromer]
(rlambda [vl]

(become (rlambda [v2]
(customer (’ vl v2))))))

a Tree-product

[Tsl

F!q@c&

c+v1*v2

(define join-cant [customer]
@lambda [vl]

(case
((zero? vl) (customer 0))
((error? vl) (error-handler vl))
(otherwise (become (rlambda [v2]

(customer (* vl ~2))))))))

CCYYUNICITICIICCFTHEACMISeptember 1990/W%, No.9

I II I I I I I I I I

we may want to terminate the com-
putation once we encounter a nega-
tive number, In this case, we can
invoke an error handler to clean up
the data or take other appropriate ac-
tion. Figure 10 specifies the code for
a join continuation with such error-
handling capability.

In general, error handlers distinct
from the regular continuation struc-
tures can be passed along. These
error handlers provide non-nonfunc-
tional jumps which can appropriately
clean-up erroneous conditions that
may arise in the course of a computa-
tion. Because this separates code with
distinct purposes, programming with
non-functional jumps supports
greater modularity; in particular, it
gives us the ability to independently
specify and reason about the normal
and abnormal behavior of a
program.

NondetermlnJsm
Although actors take a functional
view of an object’s internal behavior
at any given point in time, actors can
represent shared history-sensitive ob-
jects. Consider the canonical exam-
ple of a bank account. The behavior
of a bank account changes over time
as a function of the balance in the ac-
count. By contrast, the purely func-
tional programming approach, while
mathematically elegant, is insuffi-
cient to represen.t structures in the
real world of distributed computing:
what makes a sha.red account mean-
ingful is that state change is visible to
many users. The values of functions
are, however, returned only to the
caller or invoker of that function.

The need to implement syn-
chronization between concurrent
computations requires the ability to
define an indeterminate, complete
merge of messages sent to an actor.
We call such a merge afair merge. A
fair merge is complete because it
merges message:; from every sender
and may not ignore any sender inde-
finitely and it is indeterminate be-
cause no particular order is specified
for messages sent to the same object
by different objects. Because shared
history-sensitive objects interleave
messages sent by different objects,

modeling such objects is equivalent
to representing a fair merge.

Fair merges are a fundamental con-
cept in modeling concurrent systems;
they allow one to abstract over differ-
ent possible assumptions about the
relative speeds of processors, the
scheduling of processes on proces-
sors, and the relative speed of the com-
munication links. A model which
made specific assumptions about
such implementation-dependent fac-
tors may not be sufficiently abstract
to be useful in reasoning about dif-
ferent possible implementations of a
concurrent program (see, however,
the discussion about coordinated ac-
tion in section entitled “Coordina-
tion”). Using a semantics of fair
merge, one can reason about the
eventual behavior of a concurrent
program; reasoning about eventual
properties of a concurrent system is
analogous to reasoning about fixed
points in a recursion in sequential
programming.

The behavior of fair merge cannot
be represented by the standard sub-
stitution semantics grounded in the
lambda calculus. A substitution sem-
antics requires that an expression
have the same value regardless of the
context in which it is invoked-a con-
dition violated by the shared bank
account whose behavior changes as
a function of the balance in the
account. Because the ability to
implement shared resources is so
fundamental to a concurrent system,
the actor approach is to integrate the
ability to create modifiable, shared
structures into the programming
model. Furthermore, the connec-
tions between objects may be dynam-
ically made or broken. Fair merges in
the actor model are implicit--they
are captured by the guarantee of
message delivery which states that
any message sent to an actor must
eventually be received-i.e., after a
finite but arbitrarily long delay. The
guarantee of delivery does not specify
the order in which messages may be
received by an actor. In particular,
the sequence of messages from one
actor to another need not be preserv-
ed: this allows for the possibility of
adaptive routing.

It should be observed that the
guarantee of message delivery in an
asynchronous communication model
itself cannot be realized with cer-
tainty-it can only be provided with
some level of confidence in a well-
engineered system. For example, in
principle, an actor could produce
enough communications to exceed
the buffering capacity of the com-
munication network. This problem is
similar to that of implementing
recursion using a stack: a recursion
may be prematurely terminated by
limitations of stack size. In a sequen-
tial system, only bounded stacks are
physically realizable but the bounds
would vary with every specific im-
plementation.

BUilUing ACtOr System5
Computation in a typical actor
system is performed by the decisions
and communications of many small
modules. Actor primitives provide a
very low-level description of concur-
rent systems-much like an assem-
bly language. Higher-level constructs
are necessary both for raising the
granularity of description and for en-
capsulating faults. Such constructs
delimit computational boundaries by
aggregating a collection of events into
organizational units characterized by
patterns of interactions. Simple ex-
amples of patterns of interactions in-
clude control structures, synchronous
communication, and transactions.
The following discussion elaborates
on these examples and their use in
implementing actor systems.

Coorcllnatlon
A simple example of coordination is
that required in function calls which
return a value to the (usually im-
plicit) join continuation which is the
return address for the call. The crea-
tion of join continuations increases
the available concurrency in a func-
tion call. Thus, function calls are an
example of a very simple two-party
interaction involving synchroniza-
tion between a message and an actor.

A more complex example of a two-
party interaction is synchronous
communication between two actors;
such communication represents an

132

I I I I I I I I I I I I I I I I llllllm- OBlECT-OBIENTED DEBIDN

atomic interaction between two
actors. Because there is no instan-
taneous action at a distance in a
distributed system, synchronous
communication can be implemented
only by strongly constraining the
implementation. In particular, its
implementation requires a known
time bound on the potential com-
munication delay between the two
actors which can communicate
synchronously.

The synchronous communication
model is critical to the problem of
coordination in distributed systems.
Specifically, it allows not only infor-
mation to be shared but the meta-
knowledge that the information has
been shared: if an actor X communi-
cates information i synchronously
with an actor Y, X knows that Y
knows i and Y knows that X knows
that Y knows i, etc., ad infinitum.
This state of knowledge is called
common knowledge; common knowl-
edge is essential for coordination
between agents who need to act in
concert (see, for example, [21]). In the
above example, if X will not act un-
til X knows that Y will also act, then
it can be shown inductively that nei-
ther actor will act unless they have
common knowledge. The notion of
common knowledge can be general-
ized to collections of an arbitrary
number of agents. Common knowl-
edge may be achieved through mech-
anisms representing asynchronous
communication which is guaranteed
to be delivered within a specified
bounded time interval. Note, how-
ever, that there is no unique global
clock in a distributed system; thus
time delays must be expressed in
relativistic terms (they may be
bounded, for example, using a
distance metric). The problem of co-
ordination raises a number of in-
teresting linguistic and semantic
issues and is an active area of
research in the author’s group.

Transactions are another example
of n-party interactions. In the context
of actor systems, communications
can be classified as requests or re-
sponses. Each request carries a cus-
tomer to which a (unique) response
is to be sent. A transaction is defined

S
Multicomputers

everal kinds of concurrent computer architectures have been pro-
posed. These architectures may be broadly divided into synchro-
nous computers, shared memory computers, and multicomputers

(also called message-passing concurrent computers). Synchronous com-
puters, such as the Connection Machine, are suitable for data-parallel
computation. These computers are quite special-purpose and rather
restrictive in their model of concurrency. We are primarily interested
in general-purpose computing-for this purpose, computers which sup-
port control parallelism are of greater interest.

Sharedmemory computers have multiple processors and provide a
global shared memory. For efficiency reasons, each processor also has
a local cache, which in turn creates the problem of maintaining cache
coherence. The shared memory computers that have been built typically
consist of 16 to 32 processors. Because large numbers of processors
create increased contention for access to the global memory, this kind
of architecture is not scalable [lo].

M&computers use a large number of small programmable computers
(processors with their own memory) which are connected by a meesage-
passing network. Multicomputers have evolved out of work done by
Charles Seitz and his group at Caltech [9] and have been used to sup-
port actor languages [I]. The network in multicomputers supports the
actor mail abstraction; memory is distributed and information is localized
on each computer. Load balancing and maintaining locality of com-
munication simplified by using small objects which can be created and
destroyed dynamically, qualities which are characteristic of actor
systems.

Configurations of multicomputers with only 64 computers exhibit per-
formance comparable to conventional supercomputers. It should be
noted that machines based on the transputer are also multicomputers,
but these computers use a model of computation based on com-
municating sequential processes rather than the actor model.

Multicomputers may be divided into two classes: medium-grained
multicomputers and fine-grained multicomputers. ‘Ikro generations of
medium-grained muiticomputers have been built. A typical first-
generation machine (also called the cube or the hypercube because of
its communication network topology) consisted of 64 nodes and delivered
64 MIPS. Its communication latency was in the order of milliseconds. The
typical second-generation medium-grained multicomputer has 256
nodes, can carry out about 2.5K MIPS and has a message latency in the
order of tens of microseconds. The development of these machines
continues. Third-generation machines are expected to be built over the
next five years and increase the overall computational power by two
orders of magnitude and reduce message latency to fractions of a
microsecond [9].

However, the frontiers of multicomputer research are occupied by
work on fine-grained multicomputers. These computers realize an
idealized actor machine with fine-grain concurrent structure inherent
in the functional form of an actor’s behavior; in turn the Actor model is
well-suited to programming them (for example, see (lo]). Two projects
building experimental fine-grained multicomputers are the J-Machine
project by William Dally’s group at M.I.T. [ll] and the Mosaic project
by Charles Seitz’s group at Caltech. The experimental prototype of the
Mosaic system will consist of 16,384 nodes and is expected to deliver
200,000 MIPS [9].

Obviously, Actor languages can be implemented on a number of com-
puter architectures such as sequential processors, shared memory
machines, and SIMD architectures. However, multicomputers are par-
ticularly interesting because of their scalability characteristics. It should
also be observed that actors can be directly supported on mu&computers
whereas implementing other programming paradigms on such com-
puters may require their implementation in terms of some simple variant
of the actor execution model (For example, see [121).

CODIMUWICITION5OFT~LACM/Scptembcr 199OWo1.33, No.9 133

I I I

as all events intervening in the com-
bined causal and arrival ordering
between a given request and a re-
sponse to it. An event (processing of
a message) preced.es another event in
the causal order ifthe second event is
the result of processing the message
corresponding to the first event. The
arrival order represents the order in
which messages are processed by a
given actor.

Transactions delineate computa-
tional boundaries for error recovery
or for the alloca.tion of resources.
Transactions have been used to sup-
port debuggers in concurrent com-
putation (see below) and have been
proposed as a mechanism for deter-
mining resource allocation policies at
a high level (see the section entitled
“Resource Manargement”).

Vlsuallzln~ Actor Programs
There are two important difficulties
in monitoring and debugging con-
current programs. First, concurrency
implies that pro,gram execution is
nondeterministic. Thus any given
execution trace of a program is not
likely to be repeated. Second, in any
reasonable-sized aconcurrent system,
the large number of objects and in-
teractions between the objects results
in enormous data consisting of the
large set of events and their relations.
This is further complicated by the
fact that since there is no unique or
true global state in a distributed
system, the observations of on-going
activity in a system themselves suffer
from nondeterminism due to the
observer’s frame of reference.

One approach to monitoring com-
putations is to retroactively recon-
struct relations between events which
have already occurred; this can be ac-
complished by constructing event
diagrams of the sort described in
Figure 5. Each actor records the
communications. it has received in
the order it receives them and the ac-
tions it takes in response to those
communications -namely, the com-
munications it sends out and the ac-
tors it creates. The sending and
receiving events are linked by look-
ing at the recordings in the actor
which was the target (specified recip-

I I I

ient) of the communication.
A problem with the use of event

diagrams is that they contain every
event and, in any realistic concurrent
system, there are simply too many
events. Using event diagrams to try
to pinpoint an error can be harder
than looking for a needle in a hay-
stack. Mechanisms are necessary to
structure events by delineating com-
putational boundaries. One such
mechanism is based on the concept
of transactions. For our purposes, a
transaction is delimited by events
between a request message and a re-
sponse message, where “between” is
in terms of a partial order defined by
the transitive closure of causal and
arrival orders on events. In addition,
the transaction must obey the follow-
ing properties:

1. if a request generates subrequests,
the corresponding subtransac-
tions must also be within the
transaction

2. no subtransaction is shared with
other transactions, (i.e., two in-
dependent transactions include
the same subtransaction).

3. the first two conditions recursively
hold for the subtransactions.

Transactions can be used to pin-
point errors in much the same way a
microscope is used to pinpoint areas
by recursively focusing on smaller
regions which contain the potential
point of interest (see Figure 11). In
case of a transaction which does not
meet its specification, one can look at
its subtransactions to determine
which of these subtransactions may
be causing the observed error. In
standard usage, the term transaction
also implies a requirement of atom-
icity, (i.e., either all events that are
part of a transaction occur or none of
them occur). While the atomicity re-
quirement is useful for delimiting
boundaries for error recovery, it is
often too strong for a general-
purpose programming language.

A debugging system based on this
mechanism has been implemented
by Manning at MIT. The system is
called the observatory [19]. When the
transactional structure is not preserv-

I I I I

ed in a computation, for example
because of a shared subcomputation,
the request reply structure still serves
as a granularity control mechanism.
Using the observatory, one can end
up potentially weaving back and
forth through connected computa-
tions looking for the source of error.
In order to address this kind of dif-
ficulty, Yonezawa’s group at the Uni-
versity of Tokyo has developed an
alternative method for monitoring
programs based on collecting objects
into groups (see [24]).

Resource ManaRement
In a concurrent language, a problem
is often dynamically partitioned in-
to subproblems. An application
developer needs to be able to specify
the allocation of resources to each
dynamically created subproblem.
Because thousands of subcomputa-
tions may be created, such allocation
decisions need to be specified at a
high level of abstraction. Sponsors
are actors which connect to the
underlying resource management
system and are used to drive or throt-
tle a computational path.

For example, in a graph search
problem, examining a node may sug-
gest examining a number of other
neighboring nodes. This process may
be termed node expansion. All nodes
which are candidates for expansion
may not be equally promising can-
didates; thus a sponsor is needed to
specify how much resource to
allocate to a node expansion. Fur-
thermore, an allocation decision may
need to be dynamically modified as
a computation proceeds. In order to
determine how much resource to give
to a node expansion in a graph search
algorithm, a sponsor may use a given
sponsorship algorithm which
measures the goodness of a target
expansion. The sponsor may also be
a function of current resources which
are available for the computation.

A decision about whether to per-
form a subcomputation is thus speci-
fied independently of how the
computation itself is to be carried
out. Furthermore, a sponsorship
algorithm does not need to specify
details about how to utilize physical

134 September 199WVol.33, No.9/COYYUNICITIONIOFT”EICN

I I I I I I I

resources, such as memory or pro-
cessing power, and does not need to
make assumptions about their asso-
ciated costs. It simply provides very
high-level control over the relative
rates or extent of unfolding of par-
ticular computational paths.

In many computations, it is
natural for subcomputations to be
shared between a number of in-
dependent computations. A number
of messages may be merged before
being processed; for example, a
number of requests to a money
market account may be merged into
a single subcomputation involving
the trading of a set of stocks. In this
case, explicit policies must be
developed to merge resources and,
conversely, to assess computation
costs.

Other MOdeIS 09 ObJeCtS
A number of COOP language models
unify a declarative view of objects as
abstract data types with a procedural
view of objects as sequential pro-
cesses. In this model, each object is a
sequential process which responds to
messages sent to that object. Every
object may execute its actions con-
currently. The number of objects
which have a pending message to
process (i.e., are potentially active) at
a given time during the execution of
a program is called its concurrency
index at that time. In particular, the
concurrency index is limited by the
total number of objects in a system at
a given time, although new objects
may be created dynamically. The
concurrency index may be increased
by invoking objects asynchronously
-thus activating other objects.

Languages which use a process
model of objects include ABCL [24],
POOL [5], Concurrent Smalltalk
(see [25]) and BETA (see [22]). Some
other languages realize a simple
variant of the Actor model: the body
of an object is executed sequentially
and assignments may be used within
the body but messages are buffered
and may not be received during “in-
termediate” states of an object. Se-
mantically, the behavior of all COOP
languages, whether they use a pro-
cess model or otherwise, can be mod-

I 1 1 I I I I I 111111111- OUECTOBlEN7ED DEBIQW

Request
1

subtransaction
I I

I subtransaction

Response

1_

FIGURE ‘I 9. A TransaCtIOnal StrUCtUre. EaLh request generates a unique response.

eled by actors, much as functions can
describe the semantics of procedures
in sequential programming.

A traditional sequential process
model allows arbitrary control struc-
tures to be specified within the body
of a given object. The traditional
model also encourages sequencing of
actions which is potentially un-
necessary from the point of view of
understanding the concurrency in-
herent in the logic of a program. An
advantage of a process model is that
it allows the explicit specification of
state change using a familiar one step
at a time assignment to variables; the
variables are, of course, encapsulated
within a given object. Another ad-
vantage is that a programmer can
optimize the size of the sequential
processes to match the optimal size of
processes on a given concurrent ar-
chitecture. Thus, the process size can
be determined by a programmer as
a function of architectural charac-
teristics such as the costs associated
with process creation, context switch-
ing and communication.

On the other hand, the sequential
process model of objects has at least
three disadvantages. First, sequential
processes which are optimal on one
architecture may not be so on
another with different characteristics.
Second, because not all state change
is due to the logic of an algorithm, it
becomes harder to reason about the
parallelism in a particular algorithm.
Finally, because assignments of va.l-
ues to variables are frequently used
in the sequential process model, it

complicates programs by discourag-
ing the use of functional compo-
nents when such components are
adequate.

An alternative approach to pro-
viding efficient execution on concur-
rent architectures is to throttle the
concurrency in an inherently concur-
rent language, using translators
which are optimized for a particular
architecture. This is an area of active
research in actors (as well as in the
concurrent implementation of de-
clarative languages such as func-
tional programming languages and
the so-called concurrent logic
languages).

Inherent Concurrency
There are some basic language
design decisions involved in pro-
viding a notation to specify the
behavior of objects; these decisions
affect what kind of concurrency can
be extracted from the behavioral
description of an object. In par-
ticular, two styles of expression
evaluation can be identified:

Call/Return Style. Subexpressions
in the code are evaluated (possibly
concurrently) and their values are
substituted before proceeding to the
enclosing expression.
Customer-Passing Style. Subex-
pression’s evaluations and the join
continuations’ creation are initiated
concurrently. The object is then free
to accept the next message. A join
continuation takes the results of
subexpression evaluations and car-

CC*IY”WICITICII~CFT”LACLI/September 199O/Vol.33, No.9

I 1 I

ries out the rest of the computation
specified by the original computa-
tional thread provided in the object’s
behavior.

The customer,-passing style sup-
ported by actors is the concurrent
generalization of continuation-
passing style supported in sequential
languages such as Scheme? In case of
sequential systems, the object must
have completed processing a com-
munication before it can process
another communication. By con-
trast, in concurrent systems it is
possible to process the next com-
munication as soon as the replace-
ment behavior for an object is
known.

Note that the ability to distribute
work in systems using call/return
style, those using customer-passing
style, and those that do or do not se-
quence actions vvithin objects, may
be identical. For example, the lan-
guage Cantor developed at Caltech,
uses sequential execution of code in
the body of an object. Cantor has the
full power of actor languages; it sup-
ports dynamic creation of objects,
asynchronous message passing be-
tween objects, and atomic replace-
ment behaviors. In case of primitive
actor actions, typically asynchronous
message sends, sequencing actions
within an object causes minimal
delay; the time required for these ac-
tions is fairly small and the resulting
activity is concurrent. However,
when arbitrarily complex expressions
are to be evaluated, unnecessary se-
quential dependencies can create
significant bottlenecks.

Consider the concurrent imple-
mentation of the mergesort algo-
rithm. Assume we have a linked list
of numbers which we want to sort. Of
course, a linked list is a (very) sequen-
tial data structure; we are using it
here for illustrative purposes only. A
linked list can be split in n/2 steps
where n is the length of the list, pro-
vided that n is known-essentially we
have to walk the: pointer links to the
middle of the list and create a pointer

*It is interesting to note that Scheme itselfwas in-
spired by an attempt to understand the concept of
actors as it was first proposed [I].

136

I I I

(call it second) to that part of the list.
I f the length of the list is not known,
it would take an extra n step to deter-
mine it.

After a list is split, the two sublists
can be concurrently sorted using
mergesort, and the results merged by
successively comparing an element
from each of the two lists and picking
the smaller one. The next element
from the list to which the lesser ele-
ment belongs is then used in the next
comparison. Thus, given two sorted
lists, merge produces a sorted list
containing elements in both lists. It
should be noted that this merge pro-
cedure has nothing to do with the
concept of merge in concurrency
which represents an interleaving of
all incoming messages discussed
earlier.

The mergesort algorithm can be
expressed as in Figure 12.

The form let* represents multiple
(possibly recursive) let bindings and
first-half and second-half return the
respective halves of the list and their
lengths. As recursive calls are made,
the list is split until we have
singletons. Each split requires half
the number of operations of the
previous. As in a sequential merge-
sort, the total number of operations
is O(n log n); however, the concur-
rency index doubles each time a split
is made. Thus the splits can poten-
tially be executed in O(n) time-
given a sufficient number of pro-
cessors and assuming constant over-
head. Initially there are n/2 merges
involving only two elements and
these can be carried out concurrently.
The final step involves a single merge
of two lists of roughly n/2 elements.
The merges takes O(n) time since in
the final merge one has to walk down
the two lists doing comparisons.

Following Athas [17], Figure 13
gives the concurrency index (CI) for
the mergesort algorithm executed on
1000 elements. To simplify counting
execution steps, we assume all pro-
cesses are run synchronously-
although the algorithm has no syn-
chronous processing requirement.
Each interval in the x-axis of the
diagram represents the processing of
a single message by all actors which

I I I I

have a pending message. Further-
more, message delivery is assumed to
take one time step. These time steps
are called sweeps. Notice that a dif-
ficulty with this algorithm is that it
requires roughly n processors to sort
a list of n numbers. However, most of
these processors would be idle much
of the time (as far the execution of the
mergesort algorithm is concerned).
In practice, the processing corre-
sponding to a sweep will be delayed
until all the processing in the
previous sweep can be completed. In
other words, the concurrency index
curve plotted as a function of steps
needs to be truncated at the max-
imum number of processors avail-
able. Thus, executing the algorithm
on a real parallel computer will take
at least a time factor which equalizes
the areas under the two concurrency
index curves (the truncated curve
and the curve assuming a sufficiently
large number of processors).

The total time efficiency of
mergesort in the presence of a limited
number of processors can be im-
proved by the following observation:
Because the beginning element and
length of the first half of the list are
known, the first half of the list is
determined even as the first element
of the second half is being com-
puted.’ Thus, one can start sorting
the first half of the list concurrently
with computing the first element of
the second half of the list. The
algorithm in Figure 14 provides a
skeleton of how this can be done.

Figure 15 plots the expected ideal
behavior of this algorithm (as
simulated by the Rosette system). It
gives the concurrency index as a
function of the number of sweeps.
Note that the processors are more
uniformly busy and the maximum
number used is only a small fraction
of the number of elements in the list.
The reason for the more uniform
concurrency index is that the concur-
rency index builds up much more
rapidly as more mergesorts are
triggered.

The ease of expressionin an inher-

3This observation was communicated to rhe author
by Chris Tomlinson.

I I I I I I I

ently concurrent language simplifies
noting the data dependencies which
are simply expressed as synchroniza-
tions implicit in function calls. On
the other hand, it is possible to ex-
press the same code in terms of se-
quentially executed primitive actor
bodies-without any meaningful loss
of speed. The second case requires
that, instead of waiting for an arbi-
trarily large number of objects to
execute, the dynamic creation of a
number of context objects be explic-
itly specified to carry out the subcom-
putations. In an inherently high-level
actor language, this work is simply
transferred to a compiler.

Communlcrsf Ion
and CoorUlnaflon
Because there is no instantaneous ac-
tion at a distance, the interactions
between components of a distributed
system must be built in terms of
asynchronous communication. In an
asynchronous communication
model, a sender is free to take further
action after dispatching a given mes-
sage. This is in contrast to sequential
object-oriented languages such as
Smalltalk which use synchronous
communication: in this case, a
sender waits for a response before
continuing its execution. Syn-

FIGURE 12. A C0M/frent IIN?rgeWf
example. The actor checks to see if the
length of the list is I, if so returns the single
number ia the list. Otherwise it subdivides
the list into two halves which are bound to
first and second. These two halves are
sorted using two concurrent recursive calls
to mergesort and the results sorted lists
are merged using the actor merge. The es-
ample is discussed in 171. Note that the let
bindings are evaluated before the let body.

FIGURE 13. COnCUMe/Jcy //f&I for a
mergeSoft of 1000 elements. NOtlCa that
the vertical anis of the graph is on log scale
(from 173). The horizontal anls represents
time steps (sweeps) In which every actor
Processes a single message. This synchronous
Processing assumption is used only to
simplify counting steps and Is not required
by the algorithm. The first 1000 steps in-
UOlUe determining the length of a given list
by walking through it.

FacuReu u4. code for a concurrent
mergesort with with fewer data dependen-
ties. Note that the sequential let has been
removed.

chronous communication tits natur-
ally with the use of a single active
computational thread which weaves
through different objects which are
invoked and return a value to their
caller.

In the context of concurrent com-
puting, however, synchronous com-
munication reduces the number of
objects that may be potentially active
at any given point in time. If an asyn-
chronous communication model is

used, as in the primitive Actor model
(see section entitled “The Actor
Model”), then customers representing
return addresses must be explicitly
supplied. For example, the behavior
of an actor x in response to a [+ 3 c]

message may be to return 8 to the
customer c which has been supplied
in the message. It is often convenient
to assume that the value of a subex-
pression will be automatically
substituted for the arithmetic subex-
pression when the expression is eval-
uated. Such a notation abstracts
from the explicit synchronization
which must be implemented in terms
of asynchronous message-passing.
The difference between implicit and
explicit synchronization is similar to
the difference between an assembly
language and a (sequential) pro-
gramming language with expres-
sions. The constructs of the actor
model are primitives which can

(define mergesort
(rlambda [list ten]

(if (= len 1)
list
(let* [first(first-half list ten)]

[second (second-half list len)]]
(merge (mergesort first) (mergesorl second))))))

Concurrency Index for
Merge Sort

3000
Steps

(define mergesort
(tlambda [list len]

(if (= len 1)
list
(merge (mergesort (first-half [list len]))

(mergesort (second-half [list Ien]))))))

CCMMUNlCATlCRI CFT”E ACM/September 1990/W 33, No.9 137

I II I

be used to build higher-order
concurrent procedural and data
abstractions.

Reasoning
about ObJeCt

Behavior

Because the state of the components
of a system is constantly changing, it
is generally impossible to predeter-
mine precisely what state a particular
component will be in when another
component attempts to interact with
it. In models of concurrency based on
communicating sequential processes,
the effect of a m,essage received at
all potential entry points within a
process must be considered. In a
shared variable model, even more
interactions are possible as different
information may be written into
each shared variable of a process
by any other process, creating an
exponential number of possibilities
for interaction. Each interaction
corresponds to a different indeter-
minate execution of the system.

Actors encapsulate operations so
that they may be externally invoked
at only at one entry point. This can
be achieved by breaking up a sequen-
tial process into a number of smaller
independent objects; in fact, it is
sometimes possible to use formal
transformation rules to automatically
decompose processes into objects
with a single entry point as proposed
by Shibayama at the Tokyo Institute
of Technology (see [24]). Intermedi-
ate states of an actor are invisible to
the outside, and actors may not be
interrupted in su.ch states. Because
interactions between intermediate
states of two actors need not be con-
sidered, such decomposition pro-
motes modularity; specifically, it can
reduce the complexity of invariant
properties to be established in order
to reason about the behavior of a pro-
gram. The distinction between actors
and procedures with multiple com-
munication entry points can be
appreciated by considering their
analogy to the difference between
procedure calls and unrestricted
goto’s.

The behavior of an actor is atomic,

I I I

(i.e., internal loops are prohibited
within actors). Thus the interaction
problem is transferred to another
level: the number of interactions be-
tween independently triggered com-
putations can again be large as an
actor interleaves messages triggered
by distinct requests from different
senders. This potential disadvantage
is mitigated by two factors: first, ac-
tor languages encourage greater use
of functional components which are
referentially transparent and easy
to reason about. Second, actor lan-
guages use a customer-passing style
to separate the continuation repre-
senting an actor’s future behavior
and the continuation of a computa-
tional thread. In other models of con-
current objects, multiple entry points
are possible when synchronous com-
munication is used. However, even in
some of these models, the target ob-
ject is invoked at a single entry point
and provides a response to the caller
at the point of the call.

A second advantage of COOP is
the locality properties in the model.
.4n object may send a message only
to those objects it knows about [15].
The axioms governing which objects
are known to an object are called
locality laws; these laws were
developed in the context of the Actor
model by Hewitt and Baker at MIT.
Locality laws further restrict the
number of possible interactions be-
tween objects which have to be con-
sidered in a given system. Locality
laws make it possible to model open
systems, (i.e., evolving systems which
are open to interaction with their en-
vironment). Because the outside en-
vironment is dynamically changing
and may contain unknown elements,
its behavior cannot be completely
predicted. Therefore an open
systems model must allow local
reasoning about a module in dif-
ferent possible contexts. By regu-
lating interactions with other actors,
locality laws make such local reason-
ing feasible. In particular, because
the constituents of the distributed
system will not be known to a single
object in the system, (global) broad-
casting is not generally a meaningful
construct in open systems.

I I I I

ObJect-Oriented
ProgrammIng
Object-oriented programming sup-
ports the reusability of code, thus
supporting an evolutionary pro-
gramming methodology, and it pro-
vides modularity in programming,
thus allowing a separation of design
concerns. These powerful aspects of
object-oriented programming can be
utilized in concurrent programming
by providing mechanisms such as in-
heritance and reflection. This section
discusses the basic constructs which
can be used to build these mechan-
isms and points to some interesting
research issues.

Inheritance
A powerful feature of object-oriented
languages is inheritance. Inheritance
was introduced in Simula primarily
as a organizational tool for classifica-
tion. In Simula, objects can be de-
fined as members of a class and, as a
consequence, share procedures that
are applicable to all members of the
class; note that members of a class
may themselves be classes. Class-
based sharing naturally promotes
modularity in the code by putting all
the code common to a number of ob-
jects in one place. Modifying and
debugging programs is simplified by
making changes to a class whose
behavior in turn is visible to all its
members. Organization of objects
using classification incorporates ob-
jects into a tree-like structure and can
provide clarity in knowledge repre-
sentation-as experience in chem-
istry (periodic table) and biology
(taxonomy of species) has shown.

Inheritance essentially makes the
code in one object (a class) visible to
another object (a member). Code
sharing leads to namespace manage-
ment issues-the same identifier
may be bound to procedures and
parameters in an object and in its
class. Object-oriented languages dif-
fer regarding how such name con-
flicts are handled. In Simula,
superclass identifiers are renamed;
this essentially provides static bind-
ings which are resolved lexically.
Simula also provides for a virtual
declaration which allows identifiers

I I I I I I I

representing variables (but not those
bound to methods) in a superclass to
be visible in a subclass-a case of
dynamic scoping. Virtuals are used
to support incomplete specifications
which are to be added to by the
subclasses. While Simula was not
designed to support concurrency, one
of the designers of Simula, Kristen
Nygaard at the University of Oslo,
has developed in collaboration with
Ole Madsen at Arhus University and
others, the language BETA which ex-
plicitly supports concurrent pro-
gramming. Concurrency in BETA is
obtained by explicitly specifying al-
ternation or multisequential execu-
tion (see the chapters on BETA in
PW.

By contrast, Smalltalk takes a
more operational view of in-
heritance. Conflicts in identifiers are
resolved dynamically to provide
greater flexibility. This emphasis led
to its use primarily as a program-
ming method to support sharing and
reusability of code and data, rather
than as a mechanism for classilica-
tion. A good discussion of a number
of issues relating to inheritance and
object-oriented programming can be
found in [22]. (See, specifically the
classification of object-oriented lan-
guages developed by Peter Wegner at
Brown University.) Related mech-
anisms include classless schemes
such as dynamic inheritance and
delegation.

One proposal, advanced by Jagan-
nathan and the author, is to allow
programmers to define different
possible inheritance mechanisms in
a single linguistic framework [17].
Associated with an object is a local
environment which provides bind-
ings for the identifiers in that object.
The idea is to provide the ability to
reify environments (see the discus-
sion in the following section and to
explicitly manipulate them as first
class objects). For example, two en-
vironments may be composed so as
to shadow the bindings in one object
(for example, a class) with the bind-
ings in another object (for example,
an instance). By using different pos-
sible compositions, distinct inheri-
tance mechanisms can be obtained

,m-

m-

300, ,3L, step

FIGURE q5. Mergesort with fewer dependencies. The concurrency index for a
mergesort of 1000 elements is plotted. In this case, only approrlmately 22 processors are
used at any given time. Note that the X-a& begins at 1001 to IgnOre the SeqUenthI walk
through the list required to determine its length.

and these mechanisms can coexist in
the same system. This proposal is an
extension of the work of Jagannathan
on first-class environments [16].

The interaction of concurrency
and inheritance raises a number of
interesting issues. For example, re-
placement behaviors in actors are
spectfied atomically. I f inheritance is
defined in terms of a message-
passing protocol between one object
and another, the task of determining
a replacement may be naturally dis-
tributed as part of the replacement
behavior is determined locally and
part in a different object. This is not
an issue in a sequential language like
Smalltalk which uses synchronous
communication with a single active
thread: parts of the state of an object
are updated through assignments
made by the object and other parts of
the state may be assigned by its class.
Another complication which arises in
concurrent object-oriented languages
with inheritance mechanisms is the
interaction between inheritance and
synchronization constraints. This
has been a very active area of re-
search and a number of solutions
have been proposed (for example, see
[231); we discuss this interaction
briefly in the next section.

ReFIecClon

In the normal course of execution
of a program, a number of objects are
implicit. In particular, the interpreter
or compiler being used to evaluate
the code for an object, the text of the
code, the environment in which the
bindings of identifiers in an object are
evaluated, and the communication

network are all implicit. As one
moves from a higher-level language
to its implementation language, a
number of objects are given concrete
representations and can be explicit-
ly manipulated at the lower im-
plementation level. For example, the
join continuation actor in Figure 8 is
implicit in Figure 3. When the join
continuation is made explicit, it can
be usefully modified, as we showed in
Figure 10.

The dilemma is that if a very low-
level language is used, the advantages
of abstraction provided in a high-
level notation are lost. Alternately,
the flexibility of a low-level language
may be lost in a high-level language.
Moreover, although it is possible for
a low-level program to have a model
of its own behavior (for example, as
in the case of a Universal Turing
Machine), this need not always be
the case. A reflective architecture ad-
dresses this problem by allowing us to
program in a high-level language
without losing the possibility of
representing and manipulating the
objects that are normally implicit
[18]. Reification operators can be
used to represent at the level of the
application, objects which are in the
underlying architecture. These ob-
jects can then be manipulated like
any other objects at the higher ap-
plication level. Reflective operators
may then be used to install the
modified objects into the underlying
architecture. Reflection thus provides
a causal connection between the
operations performed on this repre-
sentation and the corresponding ob-
jects in the underlying architecture.

CCIY”I(ICIIT,CIISOFTREliCMISeptcmber 199OWol.33, No.9 139

I I I

In the example of a tree prod-
uct, the program can be expressed
in a high-level language as a func-
tional product expression. However,
when needed, its join continuation
can be dynamically reified and a new
join continuation actor can be in-
stalled to perform the necessary
synchronization.

In a COOP system, the evaluator
of an object is called its meta-object.
Reflective architectures in COOP’s
have been used to implement a num-
ber of interesting applications. For
example, Watanabe and Yonezawa
(see [24]) have used it to separate the
logic of an algorithm from its sched-
uling for the purposes of a simula-
tion: in order to build a virtual time
simulation, messages are time-
stamped by the meta-object and sent
to the meta-objec:t of the target which
uses the time-sta.mp to schedule the
processing of a message or to decide
if a rollback is required. Thus the
code for an individual object need
only contain the logic of the simula-
tion, not the mechanisms used to
carry out the simulation; the specifi-
cation of the mechanisms is separ-
ated into the me:ta-objects.

One applicat:ion of reflection in
actor-based systems is to address
the problem of synchronization con-
straints, (i.e., c:onditions limiting
which communications an actor in a
given state is able to process). For ex-
ample, a bounded buffer which is full
cannot service requests to enqueue.
In some COOP languages, synchro-
nous communication is used to en-
force synchronization constraints;
the recipient refuses to accept com-
munications which it is not in a state
to process. This solution, while quite
simple, can reduce the amount of
concurrency available in a system by
requiring suspension of the execution
of actions by a sender until the recip-
ient is ready to accept the message
-even if the sender’s future behavior
does not depend on whether the mes-
sage has been delivered.

One approach to increasing con-
currency in the synchronous com-
munication model is to dynamically
create a new object which attempts to
synchronously communicate with

140

I I I

the target. The original sender is then
free to continue its processing. While
theoretically feasible, this solution
can be inefficient: it may increase the
traffic in the communication network
as a sender repeatedly tries to
transmit the message to an unavail-
able recipient.

Another solution, used in actor
systems, is to let an object explicitly
buffer incoming communications
which it is not ready to process (i.e.,
selective inre&ivi~). For example, an
actor may need to process messages
in the order in which they are sent by
a given sender. However, because of
adaptive routing, the order in which
messages arrive may be different
from the order in which they were
sent. In this case, messages which ar-
rive out of sequence can simply be
buffered until their predecessors have
arrived.

The insensitive actor approach has
an important deficiency: it fails to
separate the question of what order
a given set of tasks can be executed
in-i.e., the synchronization con-
straints from the question of how
those tasks are to be executed-i.e.,
the algorithmic structure of actions to
be taken. Such a separation would
support local reasoning about feasi-
ble actions. In the Rosette language,
Tomlinson and Singh proposed a
reflective mechanism which reifies a
mail queue for an actor and modifies
the queue’s behavior by making it
sensitive to enabledness conditions
which capture the synchronization
constraints of the actor to which the
queue belongs 11231.

The development of architectures
and systems based on the COOP

model is an active area of research
around the world. We briefly de-
scribe a few of these efforts. This
list is by no means complete but
gives a flavor for some of the work
under way.

In Europe, several large-scale ef-
forts are under way. Under the aus-
pices of ESPIRIT, de Bakker,
America and others have worked on
the definition of a parallel object-
oriented language called POOL [5].

I I I I I

In the POOL object model, each ob-
ject has a body, a local process, which
starts as soon as the object is created
and executes in parallel with the
bodies of all other objects. Sending
and receiving of messages is indi-
cated explicitly within this body in
such a way inside every object every-
thing proceeds sequentially and de-
terministically. In industrial
partnership with Philips, the project
has also designed a language-driven
architecture called DOOM (Decen-
tralized Object-Oriented Machine).
DOOM is a parallel machine con-
sisting of a number of processors (100
in the present prototype), each with
its own private memory, and con-
nected via a packet-switching net-
work. Many small and several
medium-to-large applications have
been written in POOL. Example ap-
plication areas are databases, docu-
ment retrieval, VLSI simulation, ray
tracing, expert systems, and natural
language translation.

Another large ESPRIT project,
called ITHACA (Integrated Toolkit
for Highly Advanced Applications),
is working to produce an object-
oriented application development
environment including a concurrent
object-oriented language and
database, a Software Information
Base (which will store a large collec-
tion of classes), a set of tools for
browsing, querying and debugging
classes, and tools to support interac-
tive application construction from
reusable classes. ITHACA is a
5-year, 100 man-year/year (12 million
ECU/year) project led by Nixdorf,
with Bull, Geneva, and three other
European partners. An academic
partner in the project is a group
under the direction of Tsichritzis at
the University of Geneva.

Japan’s Ministry of International
Trade and Industry recently an-
nounced that it will support a Coop-
erating Agents Project based on
COOP. Initial funding level for this
seven year project is estimated to be
$35 million. Yonezawa at the Uni-
verity of Tokyo, whose group devel-
oped ABCL (an actor-based
concurrent language), is an academic
leader of this effort. A focus of this

September 199O/Vol.33, No.9ICOMYUWICATIOWS OFTREAOM

project is to apply the work on actors
to coordination technology,

In the United States, where a
foundation for COOP was provided
by the work of Carl Hewitt and asso-
ciates at MIT, a number of smaller
groups are developing COOP sys-

tems. Hewitt’s group in particular is
focusing on open information sys-
tems and artificial intelligence appli-
cations. Ken Kahn, Vijay Saraswat
and others at Xerox PARC are work-
ing on a high-level actor program-
ming language called Janus. The
author’s group at the University of
Illinois at Urbana-Champaign is
currently working on programming
abstractions and language models for
dependable concurrent computing.
Finally, the United States has a
considerable lead in innovative
multicomputer architectures in-
spired by language models closely
tied to concurrent object-oriented
programming.

Acknowledgments.
I wish to thank Julian Edwards,
Suresh Jagannathan, Carl Manning,
Jeff Mantei, Satoshi Matsuoka,
Oscar Nierstrasz, Vipin Swarup,
Peter Wegner, Rebecca Wirfs-Brock
and Akinori Yonezawa for helpful
comments on drafts of this article.
The ideas expressed in this article
have benefitted from interactions
with a number of other individuals
including Carl Hewitt, Alan Perlis,
Mark Scheevel, Vineet Singh,
Carolyn Talcott, Chris Tomlinson
and Becky Will. The work described
in this article has been made possible
in part by a Young Investigator
Award from the Office of Naval
Research (ONR contract number
N00014-90-J-1899) and in part by an
Incentives for Excellence Award from
the Digital Equipment Corporation.

References

1. Abelson, H. and Sussman, C.J. Structure
andlntnpretation of Computer Programs. MIT
Press, Cambridge, Mass, 1985.

2. Agha, G. Actors: A Model of Concurrent
Computation in Distributed Systems. MIT
Press, Cambridge, Mass., 1986.

3. Agha, G. Supporting multiparadigm pro-
gramming on actor architectures, In Pro-
ceedings of Parallel Architectures and Languages

Europe (PARLE ‘89), ool. ZZ: Parallel Lan-
lunges, LNCS366. Springer-Verlag, New
York, 1989.

4. Agha, G. and Jagannathan, S. Reflection
in concurrmt systmw: A model of comment con-

tinuationr. Tech. Rep., Dept. ofComputer
Science. Univ. of Illinois at Urbana

Champaign, 1990. To be published.
5. America, P. Issues in the design of a

parallel object-oriented language. Formal

Aspects Computing, 1, 4 (1989), 366-411.
6. Annot, J.K. and den Haan, P.A.M.

POOL and DOOM: The object-oriented
approach. In Parallel Computers: Object-
Oriented, Functional, Logic, PC. Treleaven,
Ed. Wiley, 1990, pp. 47-79.

7. Athas, W. Finegrain concurrent comptiationr.

Ph.D. dissertation, Computer Science
Dept., California Institute of Technology,
1987. Also published as Tech. Rep.
5242:TR:87.

8. Athas, W. and Boden, N. Cantor: An Ac-

tor Programming System for Scientific
Computing. In Proceedings of the NSF
Workshop on Object-Based Concurrat Pmgmm-
ming, G. Agha, P. Wegner, and A.
Yonezawa, Eds. ACM, N.Y., April 1989.

pp. 66-68. Special Issue of SIGPLAN
Notices.

9. Athas, W. and Seitz, C. Multicomputers:
message-passing concurrent computers.
IEEE Cornput. 9, 23 (August 1988).

10. Dally, W. A VLSZArchitecturefor Concurrent
Data Structures. Kluwer Academic Press,
1986.

11. Dally, W. The J-Machine: $&zm Supportfor
Actors. In Towards Open Znformation Systems
Science, C. Hewitt and G. Agha, Eds.
M.I.T. Press, Cambridge, Mass., to be
published.

12. Dally, W. and Wills, D. Universal mech-

anisms for concurrency. In Proceedings of

Parallel Architectures and Languages Europe
(PARLE ‘89). k51. ZZ: Parallel Languages.

Springer-Verlag, New York, 1989. LNCS
366. pp. 19-33.

13. Fox, G., Johnson, M., Lyzenga, G., Otto,
S., Salmon, J., and Walker, D. Soloing
Probloblemr on Concurrent Processors Vol I,
General Techniques and Regular Problems
Prentice Hall, Englewood Cliffs, New
Jersey, 1988.

14. Hewitt, C. Viewing control structures as
patterns ofpassing messages.J. Artif Zn-
tell. 8, 3 (June 1977) 323-364.

15. Hewitt, C. and Baker, H. Laws forcom-
municating parallel processes. In 1977
ZFZP Congress Proceedings, IFIP (August
1977) pp. 987-992.

16. Jagannathan, S. A Programming Lan-
guage Supporting First-Class, Parallel
Environments. Tech. Rep. LCS-TR 434,
Massachusetts Institute of Technology,
December 1988.

17. Jagannathan, S. and Agha, G. In-
heritance through Reflection. Tech. Rep.,
Dept. of Computer Science, Univ. of II-
linois at Urbana Champaign, 1990. To be
published.

18. Maes, P. Computational Reflection.
Ph.D. dissertation, Vrije University,

Brussels, Belgium, 1987. Tech. Rep. 87-2.
19. Manning, C. Traveler: the actor obser-

vatory. In Pmceeding-s of European Confumce
OR Object-Oriented Programming. Springer
Verlag, New York, January 1987. Also ap-
pears in Lecture Notes in Computer
Science, vol. 276.

20. Manning, C. Introduction to program-
ming actors in acore. In Towardr Open Zn-

formation Systenu Science. C. Hewitt and G.
Agha, Ed., MIT Press, Cambridge,
Mass, to be published.

2 1. Moses, Y. Knowledge in a distributed enoiron-
merit. Tech. Rep. STAN-CS-86-1120,
Computer Science Dept., Stanford

University, 1986.
22. Shriver, B. and Wegner, I?, Eds. Research

Directions in Object Oriented Programming.
MIT Press, Cambridge, Mass., 1987.

23. Tomlinson, C. and Singh, V. Inheritance
and Synchronization with Enabled Sets.
In Proceedings of OOPSLA-89, (1989). To be
published. ACM, New York.

24. Yonezawa, A., Ed. ABCL: An Object-
Oriented Concurrent System. MIT Press,
Cambridge, Mass., 1990.

25. Yonezawa, A. and Tokoro, M., Eds.
Object-Oriented Concurrent Programming.

MIT Press, Cambridge, Mass., 1987.

CR Categories and Subject Descriptors:

(3.1.2. [Processor Architectures] Multiple
Data Stream Architectures; D.1.3. [Program-
ming Techniques] Concurrent Program-
ming; D.3.1. [Programming Languages]
Formal Definitions and Theory-semantics,

syntax; D.3.3. [Programming Languages]
Language Constructs

General Terms: Design, Methodology
Additional Key Words and Phrases: Actor

model, concurrency, concurrent program-
ming structures, multiprocessor architectures,

object-oriented programming, programming
language theory

About the Author
GUL AGHA is assistant professor and direc-

tor of the Open Systems Laboratory in the
Department of Computer Science at the
University of Illinois at Urbana-Champaign.
His current research interests include concur-
rent programming languages, open system
architecture and coordination technology.
Author’s Present Address: Dept. ofcomputer
Science, 1304 W. Springfield Ave., University
of Illinois at Urbana-Champaign, Urbana, IL
61801. agha@?cs.uiuc.edu.

@ 1990 ACM OOOl-0782/90/0900-0125 $1.50

COYLIUNICITIONSCFT”ElCY/Septembcr 199O/Vol.33, No.9

