
Three significant trends have under- 
scored the central role of concurrency 
in computing. First, there is in- 
creased use of interacting processes 
by individual users, for example, ap- 
plication programs running on X 
windows. Second, workstation net- 
works have become a cost-effective 

CONCURRENT 
OBJECT-ORIENTED 

mechanism for resource sharing and 
distributed problem solving. For ex- 
ample, loosely coupled problems, 
such as finding all the factors of large 
prime numbers, have been solved by 
utilizing ideal cycles on networks of 
hundreds of workstations. A loosely 
coupled problem is one which can be 
easily partitioned into many smaller 
subproblems so that interactions 
between the subproblems is quite limited. Finally, multiprocessor tech- 
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nology has advanced to the point of 
providing supercomputing power at 
a fraction of the traditional cost. 

At the same time, software engi- 
neering considerations such as the 
need for data abstraction to promote 
program modularity underlie the 
rapid acceptance: of object-oriented 
programming methodology. By sep- 
arating the specification of what is 
done (the abstraction) from how it is 
done (the imjhwrltation), the concept 
of objects provides modularity neces- 
sary for programming in the large. It 
turns out that concurrency is a nat- 
ural consequence of the concept of 
objects. In fact Simula, the first 
object-oriented language, simulated 
a simple form of concurrency using 
coroutines on conventional architec- 
tures. Current development of con- 
current object-oriented programming 
(COOP) is providing a solid software 
foundation for concurrent comput- 
ing on multiprocessors, Future gen- 
eration computing systems are likely 
to be based on the foundations being 
developed by this emerging software 
technology. 

The goal of this article is to discuss 
the foundations and methodology of 
COOP. Concurrency) refers to the poten- 
tially parallel exe:cution of parts of a 
computation. In a concurrent com- 
putation, the components of a pro- 
gram may be executed sequentially, 
or they may be executed in parallel. 
Concurrency provides us with the 
flexibility to interleave the execution 
of components of a program on a 
single processor, or to distribute it 
among several processors. Concur- 
rency abstracts away some of the 
details in an execution, allowing us to 
concentrate on conceptual issues 
without having to be concerned with 
a particular order of execution which 
may result from the quirks of a given 
system. 

Objects can be defined as entities 
which encapsula.te data and opera- 
tions into a single computational 
unit. Object models differ in how the 
internal behavior of objects is 
specified. Further, models of concur- 
rent computation based on objects 
must specify how the objects interact, 
and different design concerns have 
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led to different models of com- 
munication between objects. Object- 
oriented programming builds on the 
concepts of objects by supporting 
patterns of reuse and classification, 
for example, through the use of in- 
heritance which allows all instances 
of a particular class to share the same 
method. 

In the following section, we outline 
some common patterns of concur- 
rent problem solving. These patterns 
can be easily expressed in terms of 
the rich variety of structures provid- 
ed by COOP. In particular, we dis- 
cuss the actor model as a framework 
for concurrent systems’ and some 
concepts which are useful in building 
actor systems. We will then describe 
some other models of objects and 
their relation to the actor model 
along with novel techniques for sup- 
porting reusability and modularity in 
concurrent object-oriented program- 
ming. The last section briefly out- 
lines some major on-going projects in 
COOP. 

It is important to note that the ac- 
tor languages give special emphasis 
to developing flexible program struc- 
tures which simplify reasoning about 
programs. By reasoning we do not 
narrowly restrict ourselves to the 
problem of program verification- 
an important program of research 
whose direct practical utility has yet 
to be established. Rather our interest 
is in the ability to understand the 
properties of software because of 
clarity in the structure of the code. 
Such an understanding may be 
gained by reasoning either infor- 
mally or formally about programs. 
The ease with which we can carry out 
such reasoning is aided by two fac- 
tors: by modularity in code which is 
the result of the ability to separate 
design concerns, and by the ability to 
abstract program structures which 
occur repeatedly. In particular, be- 
cause of their flexible structure, actor 
languages are particularly well-suited 

IThe term Actor was introduced by Carl Hewitt at 
MIT in the early 1970s to describe the concept of 
reasoning agents. It has been refkd over the years 
into a model of concurrency. It should be noted that 
our use of the term bears no relation to the languqe 
Actor-the latter being a commercial product in- 
troduced in the late 1980s. 

I I I I I 

to rapid prototyping applications. 

Patterns oi Concurrent 
Problem Solvlng 
Three common patterns of parallel- 
ism in problems have been found in 
practice (For example, see [8, 131). 
First, pipeline concurrency involves the 
enumeration of potential solutions 
and the concurrent testing of these 
solutions as they are enumerated. 
Second, divide and conquer concur- 
rency involves the concurrent elabo- 
ration of different subproblems and 
the joining of (some or all) of their 
solutions in order to obtain a solution 
to the overall problem. In divide and 
conquer concurrency, there is no in- 
teraction between the procedures 
solving the subproblems. A third pat- 
tern can be characterized as cooperative 
probh-solving Cooperative problem- 
solving involves a dynamic complex 
interconnection network. As each 
object carries out its own computa- 
tional process, it may communicate 
with other objects, for example, to 
share the intermediate results it has 
computed. An example of this kind 
of a system is a simulation where the 
physical objects are represented by 
logical (computational) objects. 

Consider some canonical exam- 
ples illustrating different patterns of 
parallelism. A simple example of 
pipeline concurrency is the prime 
sieve. To generate all the prime 
numbers, one could generate all 
numbers and remove multiples of 
2357 I , I I-**, up to the largest prime 
computed thus far. As soon as a 
number is identified as prime, it is 
added to the sieve and numbers are 
also eliminated by testing for divisi- 
bility by this prime (see Figure 1). 

The earlier stages of this particular 
pipeline are a bottleneck because 
many more numbers are divisible by 
smaller primes. The linear pipeline 
can be improved by changing it to a 
tree with the numbers sent to dif- 
ferent identically behaving objects, 
each testing for divisibility by a given 
(low) prime, and then merging the 
results. This can be achieved by us- 
ing demand-driven evaluation which 
dynamically creates context objects 
to filter the numbers for divisibility of 
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the primes below it. Specifically, each 
number can create its own copies of 
the elements of the sieve as it goes 
along. This scheme provides tree 
pipelining for testing divisibility. 

It should be observed that because 
a large number of unnecessary tests 
are performed, the technique of gen- 
erating all numbers and then filter- 
ing is quite inefficient in the first 
place. An improved version would 
avoid generating multiples of the low 
primes, 2,3,5,.. (up to some prime). 
Athas describes the behavior of an 
algorithm designed precisely to do 
this [7]. 

Divide-and-conquer concurrency 
algorithms can often be expressed as 
functions. Arguments to a function 
are evaluated concurrently and their 
values collected to determine the foal 
result. Consider the problem of de- 
termining the product of a list of 
numbers [4]. We can represent the 
list as a tree as in Figure 2. The prob- 
lem can be recursively subdivided 
into the problem of multiplying two 
sublists, each of which is concur- 
rently evaluated, and their results are 
multiplied (see Figure 3). The prod- 

FlCURE q. A S/mp/e /W/me Sieve. 
Numbers generated and successively tested 
for dlvlsiblllty by a linear plpellne of primes. 
The circled numbers represent numbers 
which are being generated. The boxed 
ItUmbWS are ellmlnatlng numbers which are 
not prime. New primes are added at the end 
of the sieve. 

FIGURE 2. A list of numbers to be 
multiplied. The numbers are represented as 
leaves of a tree. 

FBGURE 3. The code for multlplylng a 
list of numbers represented as a tree. In the 
above code, a tree Is passed to tree-product 
which tests to see If the tree Is a number 
(I.e. a singleton). If so It returns the tree, 
otherwise It subdlvldes the problem Into two 
reCUrSlIfe Calls. left-tree and right-tree 
are functions which pick off the left and 
right branches of the tree. Note that the 
arguments to * may be evaluated concurrently. 

FicuRE 4. A pictorial representation 
of the behavior of an actor. when the actor 
processes the nn communlcatlon, It deter- 
mines the behavior which will be used to 
process the n +I” communlcatlon. The mall 
address of the actor remains Invariant. The 
actor may alS0 Send communlcatlons to 
specific target actors and create new actors. 

Sieve ) 2 3 5 7 I I 

(define tree-product 
(lambda [tree] 

(if (number? tree) 
tree 
(’ (tree-product (left-tree tree)) 
(* (tree-product (right-tree tree)))))) 
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uct is then returned. The tree prod- 
uct program in Figure 3 looks very 
much like code in Lisp or Scheme ex- 
cept that the evaluation strategy is 
maximally concurrent. 

In cooperative problem solving 
concurrency, intermediate results are 
stored in objects and shared by pass- 
ing messages between objects. Simu- 
lation programs, where a logical 
object represents a physical object, is 
one application of this kind of con- 
currency. For example, the dynamic 
evolution of the paths of a number of 
bodies under the influence of each 
others’ gravitational fields can be 
modeled as systems of cooperating 
objects. Another example of coopera- 
tive problem solving is blackboard 
systems which allow collaboration 
between agents through a shared 
work space. In an object-based sys- 
tem, the blackboard and the agents 
may be represented as systems of 
objects. 

The ACtOr MOdeI 
A common semantic approach to 
modeling objects is to view the 
behavior of objects as functions of in- 
coming communications. This is the 
approach taken in the actor model 
[21]. Actors are self-contained, in- 
teractive, independent components 
of a computing system that com- 
municate by asynchronous message 
passing. The ba.sic actor primitives 
are (see Figure 4): 

create: creating an actor from a 
behavior description and a set of 
parameters, possibly including ex- 
isting actors; 

send to : sending a message to an ac- 
tor; and 

become: an actor replacing its own 
behavior by a new behavior. 

These primitives form a simple 
but powerful set upon which to build 
a wide range of higher-level abstrac- 
tions and concurrent programming 
paradigms [3]. The actor creation 
primitive is to concurrent program- 
ming what the definition of a lambda 
abstraction is to sequential program- 
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ming (For example, see [l]): it ex- 
tends the dynamic resource creation 
capability provided by function 
abstractions to concurrent computa- 
tion. The become primitive gives ac- 
tors a history-sensitive behavior 
necessary for shared mutable data 
objects. This is in contrast to a purely 
functional programming model and 
generalizes the Lisp/Scheme/ML se- 
quential style sharing to concurrent 
computation. The send to primitive 
is the asynchronous analog of func- 
tion application. It is the basic com- 
munication primitive causing a 
message to be put in an actor’s mail- 
box (message queue). It should be 
noted that each actor has a unique 
mail address determined at the time 
of its creation. This address is used to 
specify the recipient (target) of a 
message. 

In the actor model, state change is 
specified using replacement behav- 
iors. Each time an actor processes a 
communication, it also computes its 
behavior in response to the next 
communication it may process. The 
replacement behavior for a purely 
functional actor is identical to the 
original behavior. In other cases, the 
behavior may change. The change in 
the behavior may represent a simple 
change of state variables, such as 
change in the balance of an account, 
or it may represent changes in the 
operations (methods) which are car- 
ried out in response to messages. 

The ability to specify a replace- 
ment behavior retains an important 
advantage over conventional assign- 
ment statements: assignments to a 
variable fix the level of granularity at 
which one must analyze a system. By 
contrast, the replacement mecha- 
nism allows one to aggregate changes 
and avoid unnecessary control flow 
dependencies within computational 
units which are defined by reception&s 
[2]. Replacement is a serialization 
mechanism which supports a trivial 
pipelining of the replacement ac- 
tions: the aggregation of changes al- 
lows an easy determination of when 
we have finished computing the state 
of an actor and are ready to take the 
next action. For example, suppose a 
bank account actor accepts a with- 
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drawal request. In response, as soon 
as it has computed the new balance 
in the account, it is free to process the 
next request-even if other actions 
implied by the withdrawal request 
are still being carried out. To put it 
another way, the concurrent specifi- 
cation of replacement behaviors 
guarantees noninterference of state 
changes with potentially numerous 
threads running through an actor 
under a multiple-readers, single- 
writer constraint. 

Concurrent computations can be 
visualized in terms of event diagrams 
(see Figure 5). These diagrams were 
developed to model the behavior of 
actor systems. Each vertical line, 
called a &line, represents all the com- 
munications received by a given ac- 
tor. The receipt of a communication 
represents one kind of event. Another 
kind of event is the creation of a new 
actor represented by an open arc on 
the top of a lifeline. Connections be- 
tween lifelines represent causal con- 
nections between events. Pending 
events, representing communica- 
tions which have been sent but not 
received, may be represented by ac- 
tivation lines whose arrows note the 
message and the target. 

Control Structures 
Concurrent control structures repre- 
sent particular patterns of message 
passing. Consider the classic exam- 
ple of a recursive control structure 
which illustrates the use of customers 
in implementing continuations. The 
example is adapted from [14] which 
provided the original insight ex- 
ploited here. In a sequential lan- 
guage, a recursive formula is 
implemented using a stack of activa- 
tions. There is no mechanism in the 
sequential structure for distributing 
the work of computing a factorial or 
concurrently processing more than 
one request. 

Our implementation of the factor- 
ial actor relies on creating a customer 
which waits for the appropriate com- 
munication, in this case from the fac- 
torial actor itself. The factorial actor 
is free to concurrently process the 
next communication. We assume 
that a communication to a factorial 
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includes a mail address to which the 
value of the factorial is to be sent. In 
response to a communication with a 
non-zero integer n, the actor with the 
above behavior will do the following: 
l Create an actor whose behavior 

will be to multiply n with an integer 
it receives and send the reply to the 
mail address to which the factorial 
of n was to be sent. 

l Send itself the “request” to 
evaluate the factorial of n - 1 and 
send the value to the customer it 
created. 
One can intuitively see why the 

factorial actor behaves correctly, and 
can use induction to prove that it 
does so. Provided the customer is sent 
the correct value of the factorial of 
n-l, the customer will correctly 
evaluate the factorial of n. Moreover, 
the evaluation of one factorial does 
not have to be completed before the 
next request is processed; (i.e., the 
factorial actor can be a shared re- 
source concurrently evaluating sev- 
eral requests). The behavior of the 
factorial actor in response to a single 
initial request is shown in Figure 6. 

This particular function is not very 
complicated, with the consequence 
that the behavior of the customer is 
also quite simple. In general, the 
behavior of the customer can be ar- 
bitrarily complex. The actor origin- 
ally receiving the request delegates 

FIGURE 5. Actor event diagrams pro- 
vide an abstract view of computation in a 
concurrent system. An actor is identified 
with a vertical line which represents the 
linear arrival order of communications sent 
to that actor. in the above diagram, I, and 
k, represent two communications sent to 
the actor 0. The communication k, arrives 
before L,. in response to processing a com- 
munication, new actors may be created 
(dashed lines) and different actors may be 
sent communications (solid lines) which will 
arrive at their target after an arbitrary but 
finite delay. The bon represents a COmmUni- 
cation which has been sent but not yet 
processed. 

elcu~~ 6. A recursive factor/al coor- 
putation. The computation is in response 
to a request to evaluate the factorial of 3. 
Eath actor is denoted by a mail address and 
a behavior. The W’S represent the behavior 
of the dvnamicaiiv created customers. For 
euampie, the behavior vt3,cl sends I3*kl to 
the mail address c in response to the com- 
munication k. 

most of the processing required by portion to the magnitude of the com- 
the request to a large number of ac- putation required. 
tors, each of whom is dynamically There is nothing inherently con- 
created. Furthermore, the number of current in the recursive algorithm to 
such actors created is in direct pro- evaluate a factorial. Using the algo- 
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rithm in Figure 6, computation of a 
single factorial would not be any 
faster if it were clone using an actor 
language as opposed to a sequential 
language. All we have done is repre- 
sent the stack for recursion as a chain 
of customers. However, given a net- 
work of processors, an actor-based 
language could process a large num- 
ber of requests much faster by simply 
distributing the actors it creates 
among these processors. The factor- 
ial actor itself would not be as much 
of a bott1enec.k for such com- 
putations. 

Patterns of communications re- 
presented in recursion, iteration, 
divide and conquer, etc., can be 
abstracted into linguistic forms 
which automatically coordinate in- 
dependent computations. An impor- 
tant service provided by high-level 
actor languages such as Acore [20] is 
the generation and coordination of 
customers which are actors provided in 
a request message. A customer can 
be sent a reply message when a request 
is completed, or a complaint message 
if it is not possible to successfully 
complete the reqluest. 

History-Sensitive 
Behavior 
Often it is necessary for an actor to 
change its local state and to respond 
to more than one kind of message. 
For example, a bank account changes 
its behavior in response to processing 
an incoming deposit or withdrawal 
message. In order to define these 
kinds of actors, a form called mutable 
is provided in the Rosette actor 
language developed at MCC by 
Tomlinson and others in collabora- 
tion with the author. The mutable 
form is used to defme a generator ac- 
tor which creates actors using a 
behavioral template. 

The behavior of a simple bank ac- 
count may be defined using a mut- 
able expression (see Figure 7). The 
generator actor that results from the 
mutable expression is bound to the 
symbol Bar&Account. The generator 
allows creation of instances via a 
create expression. Following the key- 
word mutable is a sequence of iden- 
tifiers for the state variables of an 
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instance of Bat&Account. In this case 
there is just a single state variable, 
balance. The methods or communi- 
cation handlers associated with a 
BankAccount follow. A method is 
specified by listing a keyword repre- 
senting the operation to be executed 
by the method, followed by a table 
that represents the content of the re- 
quest message (in this case a with- 
draw-from message must specify an 
amount), and a body that defines 
how such messages are to be process- 
ed. When used within the body of a 
mutable generator, the form become 
is used to specify the replacement 
behavior of the instance of an actor 
created using the generator-the 
generator itself does not change. 

A new BankAccount may be 
generated with an initial balance of 
1000 by using the create operation as 
follows: 

(definemy-account 
(create 
BankAccountlOOO)) 

We can make the communication 
handles (the keywords determining 
which method is to be performed) 
visible by declaring them to be opera- 
tions. The behavior of an operation 
is to send to its first argument a mes- 
sage containing itself and the rest of 
the arguments it received. This 
allows object-oriented message- 
passing style and functional styles to 
be freely mixed in an actor language. 
The two styles serve as duals of each 
other. 

Requests may be issued to the new 
account by using the methods that 
are declared as operations: 

(deposit-tomy-account lOO) 
* 'deposited100 

(withdraw-frommy-account78) 
* 'withdrew 78 

Subexpressions are evaluated con- 
currently. Thus, the computation of 
a replacement behavior, done by the 
become command, is concurrent 
with the computation of a response. 
The capability to access the account 
may be passed to another actor, 
dynamically reconfiguring a system; 
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for example: 

(send-tomy-wifemy-account) 

would allow the actor whose mail ad- 
dress is bound to my-wife to access 
theactor my-account. 

Joln Contlnuatlons 
Divide and conquer concurrency 
can often be naturally expressed by 
using a functional form which eval- 
uates its arguments concurrently. 
Implementation of such forms re- 
quires the specification of a join 
continuation which synchronizes the 
evaluation of the different argu- 
ments. For example, the tree- 
product program given in Figure 3 
can be expressed in terms of actor 
primitives as shown in Figure 8. 

The form (bar foo) represents an 
asynchronous message foo sent to 
bar. The form [xl x2. . . ] 
represents a data constructor whose 
elements xl, x2, . . . are concur- 
rently evaluated. It should be noted 
that the two tree products in the do 
body are also concurrently evaluated 
and their values are sent to new- 
cust, where new-cust is a history- 
sensitive actor whose role is to store 
the first value it receives and multi- 
ply the stored number with the sec- 
ond number it receives in order to 
produce the final response that is sent 
to the customer which was specified 
at the time of its first invocation. The 
form rlambda defines actors rather 
than actor behaviors (which are de- 
fined by mutable). In the body of an 
rlambda, become specifies the re- 
placement behavior of the actor itself. 
Thus rlambda is the actor analogue 
of lambda; it captures the history- 
sensitive behavior of an actor using 
the form become. Note that in join- 
cant, vl refers to the first message 
received by the actor-which could 
correspond to either the product of 
the left subtree or the right subtree. 

The behavior of tree-product is 
shown in terms of an event diagram 
in Figure 9. When the tree-product 
actor receives a list represented as a 
tree containing ltree as its left subtree 
and rtree as its right subtree, it 
creates a customer, called a join con- 
tinuation, which awaits the computa- 
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tion of the products of each of the two 
subtrees. The join continuation then 
proceeds to multiply the two num- 
bers and send the result to the orig- 
inal requester. Because multiplication 
is commutative, we need not be con- 
cerned about matching the responses 
to the order of the parameters. If  we 
were dealing with an operator which 
was not commutative, we would need 
to tag the message corresponding to 
each argument and this tag would be 
returned with the response from the 
corresponding subcomputation. The 
replacement behavior of the join con- 
tinuation would then depend on the 
order in which the results of the eval- 
uation of arguments were received. 
Because the semantics of concur- 
rency requires that the evaluation of 
the two invocations of tree-product 
be indeterminate, the behavior of 
join-cant cannot be expressed func- 
tionally-despite the fact that the 
behavior of tree-product itself is 
functional. 

In Figure 9, we provide the be- 
havior of the history-sensitive join 
continuation explicitly. The advan- 
tage of explicit join continuations is 
that they provide considerable flexi- 
bility-they can be used to control 
the evaluation order, to do partial 

FIGURE 7. A 8allk aCCt?Ullt. Tile 
behavior of a bank account Is described In 
oblectorlented terms using communication 
handlers (methods). The behavior Is history 
sensitive: each time a balance query is 
made, a different response may be given by 
the bank account. 

FIGURE 8. The tree-product ill tWlRS 
of primitive actors. The behavior of the 
dynamically creation loln continuation IS 
expllcltly shown. we use the form rlambda 
to lndlcate the definition of an actor which 
may have a replacement behavlor. The form 
d0 Is used to simply evaluate the two 
arguments concurrently. 

FIGURE 9. rreeproducteventd 
The skeleton of actions taken bv the tree pro- 
duct In response to a message contalnlng the 
tree T= [ltree rtree] and the customer C. 

FIGURE 10. A joln contlnuatlon which 
reacts appropriately to partial tompu- 
tatlons as they are completed. Note that 
error? Is an actor which returns a true or 
false value depending on whether the 
argument It receives Is “acceptable.” 

computations, and to do dynamic er- of evaluating the other subtree [4]. 
ror handling. For example, if the Furthermore, we may want to flag er- 
number 0 is encountered, the join ror conditions such as data excep- 
continuation can immediately return tions. If  we require, for example, that 
a O-without waiting for the results all the numbers in the tree be positive 

(define BankAccount 
(mutable palance] 

[withdraw-from [amount] 
(become BankAccount (-balance amount)) 
(return ‘withdrew amount)] 

[deposit-to [amount] 
(become Bar&Account (+ balance amount)) 
(return ‘deposited amount)] 

[balance-query 
(return ‘balance-is balance)])) 

(define tree-product 
(rlambda [tree customer] 

(if (number? tree) 
(customer tree) 
(let [newcust (join-cant customer)] 

(do (tree-product (left-tree tree) new-cust) 
(do (tree-product (right-tree tree) new-cust)))))) 

(define join-cant [custromer] 
(rlambda [vl] 

(become (rlambda [v2] 
(customer (’ vl v2)))))) 

a Tree-product 

[Tsl 

F!q@c& 

c+v1*v2 

(define join-cant [customer] 
@lambda [vl] 

(case 
((zero? vl) (customer 0)) 
((error? vl) (error-handler vl)) 
(otherwise (become (rlambda [v2] 

(customer (* vl ~2)))))))) 
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we may want to terminate the com- 
putation once we encounter a nega- 
tive number, In this case, we can 
invoke an error handler to clean up 
the data or take other appropriate ac- 
tion. Figure 10 specifies the code for 
a join continuation with such error- 
handling capability. 

In general, error handlers distinct 
from the regular continuation struc- 
tures can be passed along. These 
error handlers provide non-nonfunc- 
tional jumps which can appropriately 
clean-up erroneous conditions that 
may arise in the course of a computa- 
tion. Because this separates code with 
distinct purposes, programming with 
non-functional jumps supports 
greater modularity; in particular, it 
gives us the ability to independently 
specify and reason about the normal 
and abnormal behavior of a 
program. 

NondetermlnJsm 
Although actors take a functional 
view of an object’s internal behavior 
at any given point in time, actors can 
represent shared history-sensitive ob- 
jects. Consider the canonical exam- 
ple of a bank account. The behavior 
of a bank account changes over time 
as a function of the balance in the ac- 
count. By contrast, the purely func- 
tional programming approach, while 
mathematically elegant, is insuffi- 
cient to represen.t structures in the 
real world of distributed computing: 
what makes a sha.red account mean- 
ingful is that state change is visible to 
many users. The values of functions 
are, however, returned only to the 
caller or invoker of that function. 

The need to implement syn- 
chronization between concurrent 
computations requires the ability to 
define an indeterminate, complete 
merge of messages sent to an actor. 
We call such a merge afair merge. A 
fair merge is complete because it 
merges message:; from every sender 
and may not ignore any sender inde- 
finitely and it is indeterminate be- 
cause no particular order is specified 
for messages sent to the same object 
by different objects. Because shared 
history-sensitive objects interleave 
messages sent by different objects, 

modeling such objects is equivalent 
to representing a fair merge. 

Fair merges are a fundamental con- 
cept in modeling concurrent systems; 
they allow one to abstract over differ- 
ent possible assumptions about the 
relative speeds of processors, the 
scheduling of processes on proces- 
sors, and the relative speed of the com- 
munication links. A model which 
made specific assumptions about 
such implementation-dependent fac- 
tors may not be sufficiently abstract 
to be useful in reasoning about dif- 
ferent possible implementations of a 
concurrent program (see, however, 
the discussion about coordinated ac- 
tion in section entitled “Coordina- 
tion”). Using a semantics of fair 
merge, one can reason about the 
eventual behavior of a concurrent 
program; reasoning about eventual 
properties of a concurrent system is 
analogous to reasoning about fixed 
points in a recursion in sequential 
programming. 

The behavior of fair merge cannot 
be represented by the standard sub- 
stitution semantics grounded in the 
lambda calculus. A substitution sem- 
antics requires that an expression 
have the same value regardless of the 
context in which it is invoked-a con- 
dition violated by the shared bank 
account whose behavior changes as 
a function of the balance in the 
account. Because the ability to 
implement shared resources is so 
fundamental to a concurrent system, 
the actor approach is to integrate the 
ability to create modifiable, shared 
structures into the programming 
model. Furthermore, the connec- 
tions between objects may be dynam- 
ically made or broken. Fair merges in 
the actor model are implicit--they 
are captured by the guarantee of 
message delivery which states that 
any message sent to an actor must 
eventually be received-i.e., after a 
finite but arbitrarily long delay. The 
guarantee of delivery does not specify 
the order in which messages may be 
received by an actor. In particular, 
the sequence of messages from one 
actor to another need not be preserv- 
ed: this allows for the possibility of 
adaptive routing. 

It should be observed that the 
guarantee of message delivery in an 
asynchronous communication model 
itself cannot be realized with cer- 
tainty-it can only be provided with 
some level of confidence in a well- 
engineered system. For example, in 
principle, an actor could produce 
enough communications to exceed 
the buffering capacity of the com- 
munication network. This problem is 
similar to that of implementing 
recursion using a stack: a recursion 
may be prematurely terminated by 
limitations of stack size. In a sequen- 
tial system, only bounded stacks are 
physically realizable but the bounds 
would vary with every specific im- 
plementation. 

BUilUing ACtOr System5 
Computation in a typical actor 
system is performed by the decisions 
and communications of many small 
modules. Actor primitives provide a 
very low-level description of concur- 
rent systems-much like an assem- 
bly language. Higher-level constructs 
are necessary both for raising the 
granularity of description and for en- 
capsulating faults. Such constructs 
delimit computational boundaries by 
aggregating a collection of events into 
organizational units characterized by 
patterns of interactions. Simple ex- 
amples of patterns of interactions in- 
clude control structures, synchronous 
communication, and transactions. 
The following discussion elaborates 
on these examples and their use in 
implementing actor systems. 

Coorcllnatlon 
A simple example of coordination is 
that required in function calls which 
return a value to the (usually im- 
plicit) join continuation which is the 
return address for the call. The crea- 
tion of join continuations increases 
the available concurrency in a func- 
tion call. Thus, function calls are an 
example of a very simple two-party 
interaction involving synchroniza- 
tion between a message and an actor. 

A more complex example of a two- 
party interaction is synchronous 
communication between two actors; 
such communication represents an 
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atomic interaction between two 
actors. Because there is no instan- 
taneous action at a distance in a 
distributed system, synchronous 
communication can be implemented 
only by strongly constraining the 
implementation. In particular, its 
implementation requires a known 
time bound on the potential com- 
munication delay between the two 
actors which can communicate 
synchronously. 

The synchronous communication 
model is critical to the problem of 
coordination in distributed systems. 
Specifically, it allows not only infor- 
mation to be shared but the meta- 
knowledge that the information has 
been shared: if an actor X communi- 
cates information i synchronously 
with an actor Y, X knows that Y 
knows i and Y knows that X knows 
that Y knows i, etc., ad infinitum. 
This state of knowledge is called 
common knowledge; common knowl- 
edge is essential for coordination 
between agents who need to act in 
concert (see, for example, [21]). In the 
above example, if X will not act un- 
til X knows that Y will also act, then 
it can be shown inductively that nei- 
ther actor will act unless they have 
common knowledge. The notion of 
common knowledge can be general- 
ized to collections of an arbitrary 
number of agents. Common knowl- 
edge may be achieved through mech- 
anisms representing asynchronous 
communication which is guaranteed 
to be delivered within a specified 
bounded time interval. Note, how- 
ever, that there is no unique global 
clock in a distributed system; thus 
time delays must be expressed in 
relativistic terms (they may be 
bounded, for example, using a 
distance metric). The problem of co- 
ordination raises a number of in- 
teresting linguistic and semantic 
issues and is an active area of 
research in the author’s group. 

Transactions are another example 
of n-party interactions. In the context 
of actor systems, communications 
can be classified as requests or re- 
sponses. Each request carries a cus- 
tomer to which a (unique) response 
is to be sent. A transaction is defined 

S 
Multicomputers 

everal kinds of concurrent computer architectures have been pro- 
posed. These architectures may be broadly divided into synchro- 
nous computers, shared memory computers, and multicomputers 

(also called message-passing concurrent computers). Synchronous com- 
puters, such as the Connection Machine, are suitable for data-parallel 
computation. These computers are quite special-purpose and rather 
restrictive in their model of concurrency. We are primarily interested 
in general-purpose computing-for this purpose, computers which sup- 
port control parallelism are of greater interest. 

Sharedmemory computers have multiple processors and provide a 
global shared memory. For efficiency reasons, each processor also has 
a local cache, which in turn creates the problem of maintaining cache 
coherence. The shared memory computers that have been built typically 
consist of 16 to 32 processors. Because large numbers of processors 
create increased contention for access to the global memory, this kind 
of architecture is not scalable [lo]. 

M&computers use a large number of small programmable computers 
(processors with their own memory) which are connected by a meesage- 
passing network. Multicomputers have evolved out of work done by 
Charles Seitz and his group at Caltech [9] and have been used to sup- 
port actor languages [I]. The network in multicomputers supports the 
actor mail abstraction; memory is distributed and information is localized 
on each computer. Load balancing and maintaining locality of com- 
munication simplified by using small objects which can be created and 
destroyed dynamically, qualities which are characteristic of actor 
systems. 

Configurations of multicomputers with only 64 computers exhibit per- 
formance comparable to conventional supercomputers. It should be 
noted that machines based on the transputer are also multicomputers, 
but these computers use a model of computation based on com- 
municating sequential processes rather than the actor model. 

Multicomputers may be divided into two classes: medium-grained 
multicomputers and fine-grained multicomputers. ‘Ikro generations of 
medium-grained muiticomputers have been built. A typical first- 
generation machine (also called the cube or the hypercube because of 
its communication network topology) consisted of 64 nodes and delivered 
64 MIPS. Its communication latency was in the order of milliseconds. The 
typical second-generation medium-grained multicomputer has 256 
nodes, can carry out about 2.5K MIPS and has a message latency in the 
order of tens of microseconds. The development of these machines 
continues. Third-generation machines are expected to be built over the 
next five years and increase the overall computational power by two 
orders of magnitude and reduce message latency to fractions of a 
microsecond [9]. 

However, the frontiers of multicomputer research are occupied by 
work on fine-grained multicomputers. These computers realize an 
idealized actor machine with fine-grain concurrent structure inherent 
in the functional form of an actor’s behavior; in turn the Actor model is 
well-suited to programming them (for example, see (lo]). Two projects 
building experimental fine-grained multicomputers are the J-Machine 
project by William Dally’s group at M.I.T. [ll] and the Mosaic project 
by Charles Seitz’s group at Caltech. The experimental prototype of the 
Mosaic system will consist of 16,384 nodes and is expected to deliver 
200,000 MIPS [9]. 

Obviously, Actor languages can be implemented on a number of com- 
puter architectures such as sequential processors, shared memory 
machines, and SIMD architectures. However, multicomputers are par- 
ticularly interesting because of their scalability characteristics. It should 
also be observed that actors can be directly supported on mu&computers 
whereas implementing other programming paradigms on such com- 
puters may require their implementation in terms of some simple variant 
of the actor execution model (For example, see [ 121). 
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as all events intervening in the com- 
bined causal and arrival ordering 
between a given request and a re- 
sponse to it. An event (processing of 
a message) preced.es another event in 
the causal order ifthe second event is 
the result of processing the message 
corresponding to the first event. The 
arrival order represents the order in 
which messages are processed by a 
given actor. 

Transactions delineate computa- 
tional boundaries for error recovery 
or for the alloca.tion of resources. 
Transactions have been used to sup- 
port debuggers in concurrent com- 
putation (see below) and have been 
proposed as a mechanism for deter- 
mining resource allocation policies at 
a high level (see the section entitled 
“Resource Manargement”). 

Vlsuallzln~ Actor Programs 
There are two important difficulties 
in monitoring and debugging con- 
current programs. First, concurrency 
implies that pro,gram execution is 
nondeterministic. Thus any given 
execution trace of a program is not 
likely to be repeated. Second, in any 
reasonable-sized aconcurrent system, 
the large number of objects and in- 
teractions between the objects results 
in enormous data consisting of the 
large set of events and their relations. 
This is further complicated by the 
fact that since there is no unique or 
true global state in a distributed 
system, the observations of on-going 
activity in a system themselves suffer 
from nondeterminism due to the 
observer’s frame of reference. 

One approach to monitoring com- 
putations is to retroactively recon- 
struct relations between events which 
have already occurred; this can be ac- 
complished by constructing event 
diagrams of the sort described in 
Figure 5. Each actor records the 
communications. it has received in 
the order it receives them and the ac- 
tions it takes in response to those 
communications -namely, the com- 
munications it sends out and the ac- 
tors it creates. The sending and 
receiving events are linked by look- 
ing at the recordings in the actor 
which was the target (specified recip- 
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ient) of the communication. 
A problem with the use of event 

diagrams is that they contain every 
event and, in any realistic concurrent 
system, there are simply too many 
events. Using event diagrams to try 
to pinpoint an error can be harder 
than looking for a needle in a hay- 
stack. Mechanisms are necessary to 
structure events by delineating com- 
putational boundaries. One such 
mechanism is based on the concept 
of transactions. For our purposes, a 
transaction is delimited by events 
between a request message and a re- 
sponse message, where “between” is 
in terms of a partial order defined by 
the transitive closure of causal and 
arrival orders on events. In addition, 
the transaction must obey the follow- 
ing properties: 

1. if a request generates subrequests, 
the corresponding subtransac- 
tions must also be within the 
transaction 

2. no subtransaction is shared with 
other transactions, (i.e., two in- 
dependent transactions include 
the same subtransaction). 

3. the first two conditions recursively 
hold for the subtransactions. 

Transactions can be used to pin- 
point errors in much the same way a 
microscope is used to pinpoint areas 
by recursively focusing on smaller 
regions which contain the potential 
point of interest (see Figure 11). In 
case of a transaction which does not 
meet its specification, one can look at 
its subtransactions to determine 
which of these subtransactions may 
be causing the observed error. In 
standard usage, the term transaction 
also implies a requirement of atom- 
icity, (i.e., either all events that are 
part of a transaction occur or none of 
them occur). While the atomicity re- 
quirement is useful for delimiting 
boundaries for error recovery, it is 
often too strong for a general- 
purpose programming language. 

A debugging system based on this 
mechanism has been implemented 
by Manning at MIT. The system is 
called the observatory [19]. When the 
transactional structure is not preserv- 
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ed in a computation, for example 
because of a shared subcomputation, 
the request reply structure still serves 
as a granularity control mechanism. 
Using the observatory, one can end 
up potentially weaving back and 
forth through connected computa- 
tions looking for the source of error. 
In order to address this kind of dif- 
ficulty, Yonezawa’s group at the Uni- 
versity of Tokyo has developed an 
alternative method for monitoring 
programs based on collecting objects 
into groups (see [24]). 

Resource ManaRement 
In a concurrent language, a problem 
is often dynamically partitioned in- 
to subproblems. An application 
developer needs to be able to specify 
the allocation of resources to each 
dynamically created subproblem. 
Because thousands of subcomputa- 
tions may be created, such allocation 
decisions need to be specified at a 
high level of abstraction. Sponsors 
are actors which connect to the 
underlying resource management 
system and are used to drive or throt- 
tle a computational path. 

For example, in a graph search 
problem, examining a node may sug- 
gest examining a number of other 
neighboring nodes. This process may 
be termed node expansion. All nodes 
which are candidates for expansion 
may not be equally promising can- 
didates; thus a sponsor is needed to 
specify how much resource to 
allocate to a node expansion. Fur- 
thermore, an allocation decision may 
need to be dynamically modified as 
a computation proceeds. In order to 
determine how much resource to give 
to a node expansion in a graph search 
algorithm, a sponsor may use a given 
sponsorship algorithm which 
measures the goodness of a target 
expansion. The sponsor may also be 
a function of current resources which 
are available for the computation. 

A decision about whether to per- 
form a subcomputation is thus speci- 
fied independently of how the 
computation itself is to be carried 
out. Furthermore, a sponsorship 
algorithm does not need to specify 
details about how to utilize physical 

134 September 199WVol.33, No.9/COYYUNICITIONIOFT”EICN 



I I I I I I I 

resources, such as memory or pro- 
cessing power, and does not need to 
make assumptions about their asso- 
ciated costs. It simply provides very 
high-level control over the relative 
rates or extent of unfolding of par- 
ticular computational paths. 

In many computations, it is 
natural for subcomputations to be 
shared between a number of in- 
dependent computations. A number 
of messages may be merged before 
being processed; for example, a 
number of requests to a money 
market account may be merged into 
a single subcomputation involving 
the trading of a set of stocks. In this 
case, explicit policies must be 
developed to merge resources and, 
conversely, to assess computation 
costs. 

Other MOdeIS 09 ObJeCtS 
A number of COOP language models 
unify a declarative view of objects as 
abstract data types with a procedural 
view of objects as sequential pro- 
cesses. In this model, each object is a 
sequential process which responds to 
messages sent to that object. Every 
object may execute its actions con- 
currently. The number of objects 
which have a pending message to 
process (i.e., are potentially active) at 
a given time during the execution of 
a program is called its concurrency 
index at that time. In particular, the 
concurrency index is limited by the 
total number of objects in a system at 
a given time, although new objects 
may be created dynamically. The 
concurrency index may be increased 
by invoking objects asynchronously 
-thus activating other objects. 

Languages which use a process 
model of objects include ABCL [24], 
POOL [5], Concurrent Smalltalk 
(see [25]) and BETA (see [22]). Some 
other languages realize a simple 
variant of the Actor model: the body 
of an object is executed sequentially 
and assignments may be used within 
the body but messages are buffered 
and may not be received during “in- 
termediate” states of an object. Se- 
mantically, the behavior of all COOP 
languages, whether they use a pro- 
cess model or otherwise, can be mod- 
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FIGURE ‘I 9. A TransaCtIOnal StrUCtUre. EaLh request generates a unique response. 

eled by actors, much as functions can 
describe the semantics of procedures 
in sequential programming. 

A traditional sequential process 
model allows arbitrary control struc- 
tures to be specified within the body 
of a given object. The traditional 
model also encourages sequencing of 
actions which is potentially un- 
necessary from the point of view of 
understanding the concurrency in- 
herent in the logic of a program. An 
advantage of a process model is that 
it allows the explicit specification of 
state change using a familiar one step 
at a time assignment to variables; the 
variables are, of course, encapsulated 
within a given object. Another ad- 
vantage is that a programmer can 
optimize the size of the sequential 
processes to match the optimal size of 
processes on a given concurrent ar- 
chitecture. Thus, the process size can 
be determined by a programmer as 
a function of architectural charac- 
teristics such as the costs associated 
with process creation, context switch- 
ing and communication. 

On the other hand, the sequential 
process model of objects has at least 
three disadvantages. First, sequential 
processes which are optimal on one 
architecture may not be so on 
another with different characteristics. 
Second, because not all state change 
is due to the logic of an algorithm, it 
becomes harder to reason about the 
parallelism in a particular algorithm. 
Finally, because assignments of va.l- 
ues to variables are frequently used 
in the sequential process model, it 

complicates programs by discourag- 
ing the use of functional compo- 
nents when such components are 
adequate. 

An alternative approach to pro- 
viding efficient execution on concur- 
rent architectures is to throttle the 
concurrency in an inherently concur- 
rent language, using translators 
which are optimized for a particular 
architecture. This is an area of active 
research in actors (as well as in the 
concurrent implementation of de- 
clarative languages such as func- 
tional programming languages and 
the so-called concurrent logic 
languages). 

Inherent Concurrency 
There are some basic language 
design decisions involved in pro- 
viding a notation to specify the 
behavior of objects; these decisions 
affect what kind of concurrency can 
be extracted from the behavioral 
description of an object. In par- 
ticular, two styles of expression 
evaluation can be identified: 

Call/Return Style. Subexpressions 
in the code are evaluated (possibly 
concurrently) and their values are 
substituted before proceeding to the 
enclosing expression. 
Customer-Passing Style. Subex- 
pression’s evaluations and the join 
continuations’ creation are initiated 
concurrently. The object is then free 
to accept the next message. A join 
continuation takes the results of 
subexpression evaluations and car- 
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ries out the rest of the computation 
specified by the original computa- 
tional thread provided in the object’s 
behavior. 

The customer,-passing style sup- 
ported by actors is the concurrent 
generalization of continuation- 
passing style supported in sequential 
languages such as Scheme? In case of 
sequential systems, the object must 
have completed processing a com- 
munication before it can process 
another communication. By con- 
trast, in concurrent systems it is 
possible to process the next com- 
munication as soon as the replace- 
ment behavior for an object is 
known. 

Note that the ability to distribute 
work in systems using call/return 
style, those using customer-passing 
style, and those that do or do not se- 
quence actions vvithin objects, may 
be identical. For example, the lan- 
guage Cantor developed at Caltech, 
uses sequential execution of code in 
the body of an object. Cantor has the 
full power of actor languages; it sup- 
ports dynamic creation of objects, 
asynchronous message passing be- 
tween objects, and atomic replace- 
ment behaviors. In case of primitive 
actor actions, typically asynchronous 
message sends, sequencing actions 
within an object causes minimal 
delay; the time required for these ac- 
tions is fairly small and the resulting 
activity is concurrent. However, 
when arbitrarily complex expressions 
are to be evaluated, unnecessary se- 
quential dependencies can create 
significant bottlenecks. 

Consider the concurrent imple- 
mentation of the mergesort algo- 
rithm. Assume we have a linked list 
of numbers which we want to sort. Of 
course, a linked list is a (very) sequen- 
tial data structure; we are using it 
here for illustrative purposes only. A 
linked list can be split in n/2 steps 
where n is the length of the list, pro- 
vided that n is known-essentially we 
have to walk the: pointer links to the 
middle of the list and create a pointer 

*It is interesting to note that Scheme itselfwas in- 
spired by an attempt to understand the concept of 
actors as it was first proposed [I]. 
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(call it second) to that part of the list. 
I f  the length of the list is not known, 
it would take an extra n step to deter- 
mine it. 

After a list is split, the two sublists 
can be concurrently sorted using 
mergesort, and the results merged by 
successively comparing an element 
from each of the two lists and picking 
the smaller one. The next element 
from the list to which the lesser ele- 
ment belongs is then used in the next 
comparison. Thus, given two sorted 
lists, merge produces a sorted list 
containing elements in both lists. It 
should be noted that this merge pro- 
cedure has nothing to do with the 
concept of merge in concurrency 
which represents an interleaving of 
all incoming messages discussed 
earlier. 

The mergesort algorithm can be 
expressed as in Figure 12. 

The form let* represents multiple 
(possibly recursive) let bindings and 
first-half and second-half return the 
respective halves of the list and their 
lengths. As recursive calls are made, 
the list is split until we have 
singletons. Each split requires half 
the number of operations of the 
previous. As in a sequential merge- 
sort, the total number of operations 
is O(n log n); however, the concur- 
rency index doubles each time a split 
is made. Thus the splits can poten- 
tially be executed in O(n) time- 
given a sufficient number of pro- 
cessors and assuming constant over- 
head. Initially there are n/2 merges 
involving only two elements and 
these can be carried out concurrently. 
The final step involves a single merge 
of two lists of roughly n/2 elements. 
The merges takes O(n) time since in 
the final merge one has to walk down 
the two lists doing comparisons. 

Following Athas [17], Figure 13 
gives the concurrency index (CI) for 
the mergesort algorithm executed on 
1000 elements. To simplify counting 
execution steps, we assume all pro- 
cesses are run synchronously- 
although the algorithm has no syn- 
chronous processing requirement. 
Each interval in the x-axis of the 
diagram represents the processing of 
a single message by all actors which 
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have a pending message. Further- 
more, message delivery is assumed to 
take one time step. These time steps 
are called sweeps. Notice that a dif- 
ficulty with this algorithm is that it 
requires roughly n processors to sort 
a list of n numbers. However, most of 
these processors would be idle much 
of the time (as far the execution of the 
mergesort algorithm is concerned). 
In practice, the processing corre- 
sponding to a sweep will be delayed 
until all the processing in the 
previous sweep can be completed. In 
other words, the concurrency index 
curve plotted as a function of steps 
needs to be truncated at the max- 
imum number of processors avail- 
able. Thus, executing the algorithm 
on a real parallel computer will take 
at least a time factor which equalizes 
the areas under the two concurrency 
index curves (the truncated curve 
and the curve assuming a sufficiently 
large number of processors). 

The total time efficiency of 
mergesort in the presence of a limited 
number of processors can be im- 
proved by the following observation: 
Because the beginning element and 
length of the first half of the list are 
known, the first half of the list is 
determined even as the first element 
of the second half is being com- 
puted.’ Thus, one can start sorting 
the first half of the list concurrently 
with computing the first element of 
the second half of the list. The 
algorithm in Figure 14 provides a 
skeleton of how this can be done. 

Figure 15 plots the expected ideal 
behavior of this algorithm (as 
simulated by the Rosette system). It 
gives the concurrency index as a 
function of the number of sweeps. 
Note that the processors are more 
uniformly busy and the maximum 
number used is only a small fraction 
of the number of elements in the list. 
The reason for the more uniform 
concurrency index is that the concur- 
rency index builds up much more 
rapidly as more mergesorts are 
triggered. 

The ease of expressionin an inher- 

3This observation was communicated to rhe author 
by Chris Tomlinson. 
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ently concurrent language simplifies 
noting the data dependencies which 
are simply expressed as synchroniza- 
tions implicit in function calls. On 
the other hand, it is possible to ex- 
press the same code in terms of se- 
quentially executed primitive actor 
bodies-without any meaningful loss 
of speed. The second case requires 
that, instead of waiting for an arbi- 
trarily large number of objects to 
execute, the dynamic creation of a 
number of context objects be explic- 
itly specified to carry out the subcom- 
putations. In an inherently high-level 
actor language, this work is simply 
transferred to a compiler. 

Communlcrsf Ion 
and CoorUlnaflon 
Because there is no instantaneous ac- 
tion at a distance, the interactions 
between components of a distributed 
system must be built in terms of 
asynchronous communication. In an 
asynchronous communication 
model, a sender is free to take further 
action after dispatching a given mes- 
sage. This is in contrast to sequential 
object-oriented languages such as 
Smalltalk which use synchronous 
communication: in this case, a 
sender waits for a response before 
continuing its execution. Syn- 

FIGURE 12. A C0M/frent IIN?rgeWf 
example. The actor checks to see if the 
length of the list is I, if so returns the single 
number ia the list. Otherwise it subdivides 
the list into two halves which are bound to 
first and second. These two halves are 
sorted using two concurrent recursive calls 
to mergesort and the results sorted lists 
are merged using the actor merge. The es- 
ample is discussed in 171. Note that the let 
bindings are evaluated before the let body. 

FIGURE 13. COnCUMe/Jcy //f&I for a 
mergeSoft of 1000 elements. NOtlCa that 
the vertical anis of the graph is on log scale 
(from 173). The horizontal anls represents 
time steps (sweeps) In which every actor 
Processes a single message. This synchronous 
Processing assumption is used only to 
simplify counting steps and Is not required 
by the algorithm. The first 1000 steps in- 
UOlUe determining the length of a given list 
by walking through it. 

FacuReu u4. code for a concurrent 
mergesort with with fewer data dependen- 
ties. Note that the sequential let has been 
removed. 

chronous communication tits natur- 
ally with the use of a single active 
computational thread which weaves 
through different objects which are 
invoked and return a value to their 
caller. 

In the context of concurrent com- 
puting, however, synchronous com- 
munication reduces the number of 
objects that may be potentially active 
at any given point in time. If  an asyn- 
chronous communication model is 

used, as in the primitive Actor model 
(see section entitled “The Actor 
Model”), then customers representing 
return addresses must be explicitly 
supplied. For example, the behavior 
of an actor x in response to a [ + 3 c] 

message may be to return 8 to the 
customer c which has been supplied 
in the message. It is often convenient 
to assume that the value of a subex- 
pression will be automatically 
substituted for the arithmetic subex- 
pression when the expression is eval- 
uated. Such a notation abstracts 
from the explicit synchronization 
which must be implemented in terms 
of asynchronous message-passing. 
The difference between implicit and 
explicit synchronization is similar to 
the difference between an assembly 
language and a (sequential) pro- 
gramming language with expres- 
sions. The constructs of the actor 
model are primitives which can 

(define mergesort 
(rlambda [list ten] 

(if (= len 1) 
list 
(let* [first(first-half list ten)] 

[second (second-half list len)]] 
(merge (mergesort first) (mergesorl second)))))) 

Concurrency Index for 
Merge Sort 

3000 
Steps 

(define mergesort 
(tlambda [list len] 

(if (= len 1) 
list 
(merge (mergesort (first-half [list len])) 

(mergesort (second-half [list Ien])))))) 
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be used to build higher-order 
concurrent procedural and data 
abstractions. 

Reasoning 
about ObJeCt 

Behavior 

Because the state of the components 
of a system is constantly changing, it 
is generally impossible to predeter- 
mine precisely what state a particular 
component will be in when another 
component attempts to interact with 
it. In models of concurrency based on 
communicating sequential processes, 
the effect of a m,essage received at 
all potential entry points within a 
process must be considered. In a 
shared variable model, even more 
interactions are possible as different 
information may be written into 
each shared variable of a process 
by any other process, creating an 
exponential number of possibilities 
for interaction. Each interaction 
corresponds to a different indeter- 
minate execution of the system. 

Actors encapsulate operations so 
that they may be externally invoked 
at only at one entry point. This can 
be achieved by breaking up a sequen- 
tial process into a number of smaller 
independent objects; in fact, it is 
sometimes possible to use formal 
transformation rules to automatically 
decompose processes into objects 
with a single entry point as proposed 
by Shibayama at the Tokyo Institute 
of Technology (see [24]). Intermedi- 
ate states of an actor are invisible to 
the outside, and actors may not be 
interrupted in su.ch states. Because 
interactions between intermediate 
states of two actors need not be con- 
sidered, such decomposition pro- 
motes modularity; specifically, it can 
reduce the complexity of invariant 
properties to be established in order 
to reason about the behavior of a pro- 
gram. The distinction between actors 
and procedures with multiple com- 
munication entry points can be 
appreciated by considering their 
analogy to the difference between 
procedure calls and unrestricted 
goto’s. 

The behavior of an actor is atomic, 

I I I 

(i.e., internal loops are prohibited 
within actors). Thus the interaction 
problem is transferred to another 
level: the number of interactions be- 
tween independently triggered com- 
putations can again be large as an 
actor interleaves messages triggered 
by distinct requests from different 
senders. This potential disadvantage 
is mitigated by two factors: first, ac- 
tor languages encourage greater use 
of functional components which are 
referentially transparent and easy 
to reason about. Second, actor lan- 
guages use a customer-passing style 
to separate the continuation repre- 
senting an actor’s future behavior 
and the continuation of a computa- 
tional thread. In other models of con- 
current objects, multiple entry points 
are possible when synchronous com- 
munication is used. However, even in 
some of these models, the target ob- 
ject is invoked at a single entry point 
and provides a response to the caller 
at the point of the call. 

A second advantage of COOP is 
the locality properties in the model. 
.4n object may send a message only 
to those objects it knows about [15]. 
The axioms governing which objects 
are known to an object are called 
locality laws; these laws were 
developed in the context of the Actor 
model by Hewitt and Baker at MIT. 
Locality laws further restrict the 
number of possible interactions be- 
tween objects which have to be con- 
sidered in a given system. Locality 
laws make it possible to model open 
systems, (i.e., evolving systems which 
are open to interaction with their en- 
vironment). Because the outside en- 
vironment is dynamically changing 
and may contain unknown elements, 
its behavior cannot be completely 
predicted. Therefore an open 
systems model must allow local 
reasoning about a module in dif- 
ferent possible contexts. By regu- 
lating interactions with other actors, 
locality laws make such local reason- 
ing feasible. In particular, because 
the constituents of the distributed 
system will not be known to a single 
object in the system, (global) broad- 
casting is not generally a meaningful 
construct in open systems. 
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ObJect-Oriented 
ProgrammIng 
Object-oriented programming sup- 
ports the reusability of code, thus 
supporting an evolutionary pro- 
gramming methodology, and it pro- 
vides modularity in programming, 
thus allowing a separation of design 
concerns. These powerful aspects of 
object-oriented programming can be 
utilized in concurrent programming 
by providing mechanisms such as in- 
heritance and reflection. This section 
discusses the basic constructs which 
can be used to build these mechan- 
isms and points to some interesting 
research issues. 

Inheritance 
A powerful feature of object-oriented 
languages is inheritance. Inheritance 
was introduced in Simula primarily 
as a organizational tool for classifica- 
tion. In Simula, objects can be de- 
fined as members of a class and, as a 
consequence, share procedures that 
are applicable to all members of the 
class; note that members of a class 
may themselves be classes. Class- 
based sharing naturally promotes 
modularity in the code by putting all 
the code common to a number of ob- 
jects in one place. Modifying and 
debugging programs is simplified by 
making changes to a class whose 
behavior in turn is visible to all its 
members. Organization of objects 
using classification incorporates ob- 
jects into a tree-like structure and can 
provide clarity in knowledge repre- 
sentation-as experience in chem- 
istry (periodic table) and biology 
(taxonomy of species) has shown. 

Inheritance essentially makes the 
code in one object (a class) visible to 
another object (a member). Code 
sharing leads to namespace manage- 
ment issues-the same identifier 
may be bound to procedures and 
parameters in an object and in its 
class. Object-oriented languages dif- 
fer regarding how such name con- 
flicts are handled. In Simula, 
superclass identifiers are renamed; 
this essentially provides static bind- 
ings which are resolved lexically. 
Simula also provides for a virtual 
declaration which allows identifiers 
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representing variables (but not those 
bound to methods) in a superclass to 
be visible in a subclass-a case of 
dynamic scoping. Virtuals are used 
to support incomplete specifications 
which are to be added to by the 
subclasses. While Simula was not 
designed to support concurrency, one 
of the designers of Simula, Kristen 
Nygaard at the University of Oslo, 
has developed in collaboration with 
Ole Madsen at Arhus University and 
others, the language BETA which ex- 
plicitly supports concurrent pro- 
gramming. Concurrency in BETA is 
obtained by explicitly specifying al- 
ternation or multisequential execu- 
tion (see the chapters on BETA in 
PW. 

By contrast, Smalltalk takes a 
more operational view of in- 
heritance. Conflicts in identifiers are 
resolved dynamically to provide 
greater flexibility. This emphasis led 
to its use primarily as a program- 
ming method to support sharing and 
reusability of code and data, rather 
than as a mechanism for classilica- 
tion. A good discussion of a number 
of issues relating to inheritance and 
object-oriented programming can be 
found in [22]. (See, specifically the 
classification of object-oriented lan- 
guages developed by Peter Wegner at 
Brown University.) Related mech- 
anisms include classless schemes 
such as dynamic inheritance and 
delegation. 

One proposal, advanced by Jagan- 
nathan and the author, is to allow 
programmers to define different 
possible inheritance mechanisms in 
a single linguistic framework [17]. 
Associated with an object is a local 
environment which provides bind- 
ings for the identifiers in that object. 
The idea is to provide the ability to 
reify environments (see the discus- 
sion in the following section and to 
explicitly manipulate them as first 
class objects). For example, two en- 
vironments may be composed so as 
to shadow the bindings in one object 
(for example, a class) with the bind- 
ings in another object (for example, 
an instance). By using different pos- 
sible compositions, distinct inheri- 
tance mechanisms can be obtained 

,m- 

m- 

300, ,3L, step 

FIGURE q5. Mergesort with fewer dependencies. The concurrency index for a 
mergesort of 1000 elements is plotted. In this case, only approrlmately 22 processors are 
used at any given time. Note that the X-a& begins at 1001 to IgnOre the SeqUenthI walk 
through the list required to determine its length. 

and these mechanisms can coexist in 
the same system. This proposal is an 
extension of the work of Jagannathan 
on first-class environments [16]. 

The interaction of concurrency 
and inheritance raises a number of 
interesting issues. For example, re- 
placement behaviors in actors are 
spectfied atomically. I f  inheritance is 
defined in terms of a message- 
passing protocol between one object 
and another, the task of determining 
a replacement may be naturally dis- 
tributed as part of the replacement 
behavior is determined locally and 
part in a different object. This is not 
an issue in a sequential language like 
Smalltalk which uses synchronous 
communication with a single active 
thread: parts of the state of an object 
are updated through assignments 
made by the object and other parts of 
the state may be assigned by its class. 
Another complication which arises in 
concurrent object-oriented languages 
with inheritance mechanisms is the 
interaction between inheritance and 
synchronization constraints. This 
has been a very active area of re- 
search and a number of solutions 
have been proposed (for example, see 
[231); we discuss this interaction 
briefly in the next section. 

ReFIecClon 

In the normal course of execution 
of a program, a number of objects are 
implicit. In particular, the interpreter 
or compiler being used to evaluate 
the code for an object, the text of the 
code, the environment in which the 
bindings of identifiers in an object are 
evaluated, and the communication 

network are all implicit. As one 
moves from a higher-level language 
to its implementation language, a 
number of objects are given concrete 
representations and can be explicit- 
ly manipulated at the lower im- 
plementation level. For example, the 
join continuation actor in Figure 8 is 
implicit in Figure 3. When the join 
continuation is made explicit, it can 
be usefully modified, as we showed in 
Figure 10. 

The dilemma is that if a very low- 
level language is used, the advantages 
of abstraction provided in a high- 
level notation are lost. Alternately, 
the flexibility of a low-level language 
may be lost in a high-level language. 
Moreover, although it is possible for 
a low-level program to have a model 
of its own behavior (for example, as 
in the case of a Universal Turing 
Machine), this need not always be 
the case. A reflective architecture ad- 
dresses this problem by allowing us to 
program in a high-level language 
without losing the possibility of 
representing and manipulating the 
objects that are normally implicit 
[18]. Reification operators can be 
used to represent at the level of the 
application, objects which are in the 
underlying architecture. These ob- 
jects can then be manipulated like 
any other objects at the higher ap- 
plication level. Reflective operators 
may then be used to install the 
modified objects into the underlying 
architecture. Reflection thus provides 
a causal connection between the 
operations performed on this repre- 
sentation and the corresponding ob- 
jects in the underlying architecture. 

CCIY”I(ICIIT,CIISOFTREliCMISeptcmber 199OWol.33, No.9 139 



I I I 

In the example of a tree prod- 
uct, the program can be expressed 
in a high-level language as a func- 
tional product expression. However, 
when needed, its join continuation 
can be dynamically reified and a new 
join continuation actor can be in- 
stalled to perform the necessary 
synchronization. 

In a COOP system, the evaluator 
of an object is called its meta-object. 
Reflective architectures in COOP’s 
have been used to implement a num- 
ber of interesting applications. For 
example, Watanabe and Yonezawa 
(see [24]) have used it to separate the 
logic of an algorithm from its sched- 
uling for the purposes of a simula- 
tion: in order to build a virtual time 
simulation, messages are time- 
stamped by the meta-object and sent 
to the meta-objec:t of the target which 
uses the time-sta.mp to schedule the 
processing of a message or to decide 
if a rollback is required. Thus the 
code for an individual object need 
only contain the logic of the simula- 
tion, not the mechanisms used to 
carry out the simulation; the specifi- 
cation of the mechanisms is separ- 
ated into the me:ta-objects. 

One applicat:ion of reflection in 
actor-based systems is to address 
the problem of synchronization con- 
straints, (i.e., c:onditions limiting 
which communications an actor in a 
given state is able to process). For ex- 
ample, a bounded buffer which is full 
cannot service requests to enqueue. 
In some COOP languages, synchro- 
nous communication is used to en- 
force synchronization constraints; 
the recipient refuses to accept com- 
munications which it is not in a state 
to process. This solution, while quite 
simple, can reduce the amount of 
concurrency available in a system by 
requiring suspension of the execution 
of actions by a sender until the recip- 
ient is ready to accept the message 
-even if the sender’s future behavior 
does not depend on whether the mes- 
sage has been delivered. 

One approach to increasing con- 
currency in the synchronous com- 
munication model is to dynamically 
create a new object which attempts to 
synchronously communicate with 
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the target. The original sender is then 
free to continue its processing. While 
theoretically feasible, this solution 
can be inefficient: it may increase the 
traffic in the communication network 
as a sender repeatedly tries to 
transmit the message to an unavail- 
able recipient. 

Another solution, used in actor 
systems, is to let an object explicitly 
buffer incoming communications 
which it is not ready to process (i.e., 
selective inre&ivi~). For example, an 
actor may need to process messages 
in the order in which they are sent by 
a given sender. However, because of 
adaptive routing, the order in which 
messages arrive may be different 
from the order in which they were 
sent. In this case, messages which ar- 
rive out of sequence can simply be 
buffered until their predecessors have 
arrived. 

The insensitive actor approach has 
an important deficiency: it fails to 
separate the question of what order 
a given set of tasks can be executed 
in-i.e., the synchronization con- 
straints from the question of how 
those tasks are to be executed-i.e., 
the algorithmic structure of actions to 
be taken. Such a separation would 
support local reasoning about feasi- 
ble actions. In the Rosette language, 
Tomlinson and Singh proposed a 
reflective mechanism which reifies a 
mail queue for an actor and modifies 
the queue’s behavior by making it 
sensitive to enabledness conditions 
which capture the synchronization 
constraints of the actor to which the 
queue belongs 11231. 

The development of architectures 
and systems based on the COOP 

model is an active area of research 
around the world. We briefly de- 
scribe a few of these efforts. This 
list is by no means complete but 
gives a flavor for some of the work 
under way. 

In Europe, several large-scale ef- 
forts are under way. Under the aus- 
pices of ESPIRIT, de Bakker, 
America and others have worked on 
the definition of a parallel object- 
oriented language called POOL [5]. 
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In the POOL object model, each ob- 
ject has a body, a local process, which 
starts as soon as the object is created 
and executes in parallel with the 
bodies of all other objects. Sending 
and receiving of messages is indi- 
cated explicitly within this body in 
such a way inside every object every- 
thing proceeds sequentially and de- 
terministically. In industrial 
partnership with Philips, the project 
has also designed a language-driven 
architecture called DOOM (Decen- 
tralized Object-Oriented Machine). 
DOOM is a parallel machine con- 
sisting of a number of processors (100 
in the present prototype), each with 
its own private memory, and con- 
nected via a packet-switching net- 
work. Many small and several 
medium-to-large applications have 
been written in POOL. Example ap- 
plication areas are databases, docu- 
ment retrieval, VLSI simulation, ray 
tracing, expert systems, and natural 
language translation. 

Another large ESPRIT project, 
called ITHACA (Integrated Toolkit 
for Highly Advanced Applications), 
is working to produce an object- 
oriented application development 
environment including a concurrent 
object-oriented language and 
database, a Software Information 
Base (which will store a large collec- 
tion of classes), a set of tools for 
browsing, querying and debugging 
classes, and tools to support interac- 
tive application construction from 
reusable classes. ITHACA is a 
5-year, 100 man-year/year (12 million 
ECU/year) project led by Nixdorf, 
with Bull, Geneva, and three other 
European partners. An academic 
partner in the project is a group 
under the direction of Tsichritzis at 
the University of Geneva. 

Japan’s Ministry of International 
Trade and Industry recently an- 
nounced that it will support a Coop- 
erating Agents Project based on 
COOP. Initial funding level for this 
seven year project is estimated to be 
$35 million. Yonezawa at the Uni- 
verity of Tokyo, whose group devel- 
oped ABCL (an actor-based 
concurrent language), is an academic 
leader of this effort. A focus of this 
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project is to apply the work on actors 
to coordination technology, 

In the United States, where a 
foundation for COOP was provided 
by the work of Carl Hewitt and asso- 
ciates at MIT, a number of smaller 
groups are developing COOP sys- 

tems. Hewitt’s group in particular is 
focusing on open information sys- 
tems and artificial intelligence appli- 
cations. Ken Kahn, Vijay Saraswat 
and others at Xerox PARC are work- 
ing on a high-level actor program- 
ming language called Janus. The 
author’s group at the University of 
Illinois at Urbana-Champaign is 
currently working on programming 
abstractions and language models for 
dependable concurrent computing. 
Finally, the United States has a 
considerable lead in innovative 
multicomputer architectures in- 
spired by language models closely 
tied to concurrent object-oriented 
programming. 
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