
Special Topics in Computer Systems:

Programming Models for
Distributed Computing

Fall 2016

Heather Miller

Office: WVH224 (temp) & WVH302D
heather@ccs.neu.edu

Office hours: by appointment

http://heather.miller.am/teaching/cs7680
Course webpage:

CS7680

mailto:heather@ccs.neu.edu?subject=
http://heather.miller.am/teaching/cs7680

This course is:
A research seminar course. That means
we will focus on:

‣ (primarily) on reading, analyzing, discussing
research articles

‣ informally presenting and explaining scientific
contributions,

‣ and working together to write up our insights for
a broad technical audience

More practitioner-focused, no hardcore PL
theory required.

Prerequisites
‣ A basic undergraduate CS curriculum
‣ Some familiarity with introductory PL concepts

(or a willingness to learn)

PhD-level course. Open to upper-level
undergraduates or MS students with permission.

you should be not only be proficient at reading
and digesting research papers, but at
dissecting them, and clearly explaining the key
insights and implications within them.

you’ll learn a lot about the different sorts of
distributed systems that are out there, when
different systems are appropriate, and you’ll be
recognized writer :-)

At the end of this course,

As a side effect of this course,

skill that will help you
in many walks of life:

Outline:

What this course is about

Course structure/logistics

Programming Models

Distributed Systems

+

Programming Models

Typically focused on achieving increased developer productivity

Bridge the gap between an underlying runtime/architecture and
the supporting levels of software available

Typically provide guarantees to a programmer, and/or restrictions
(hopefully helpful ones)

Typically focused on achieving increased developer productivity

Bridge the gap between an underlying runtime/architecture
and the supporting levels of software available

Typically provide guarantees to a programmer, and/or restrictions
(hopefully helpful ones)

A moving target!

Programming Models

Typically focused on achieving increased developer productivity

Bridge the gap between an underlying runtime/architecture
and the supporting levels of software available

Typically provide guarantees to a programmer, and/or restrictions
(hopefully helpful ones)

A moving target!

Sometimes: an abstraction
over the underlying system/
runtime, sometimes not.

Programming Models

Reading: A View of Cloud Computing (2010), see website

Programming Models

Typically focused on achieving increased developer productivity

Bridge the gap between an underlying runtime/architecture and
the supporting levels of software available

Typically provide guarantees to a programmer, and/or restrictions
(hopefully helpful ones)

There’s a bit of a human element to programming models.
There’s also a logical one.

That is, one that amenable to dynamic/static checking and/or verification.

Programming Models

Typically focused on achieving increased developer productivity

Bridge the gap between an underlying runtime/architecture and
the supporting levels of software available

Typically provide guarantees to a programmer, and/or
restrictions (hopefully helpful ones)

A system that makes weaker guarantees has more
freedom of action, and hence potentially greater
performance - but it is also potentially hard to reason
about.

In a perfect world, with unlimited resources, we wouldn’t need
distributed systems. We would we could just specify whatever
resources we would need, and a machine with everything we need
would always be available.

Since we live in an imperfect world, we have to figure out the right
place on some sort of cost-benefit curve to place our system.

However, if your problem grows, in some way, and upgrading
your hardware on a single node isn’t possible, you’ll find
yourself next in the world of distributed systems.

Most of what you’ve learned in undergrad will help you figure this
out if your problem can largely fit on one machine, and upgrading
your hardware as your problem grows usually works.

Distributed Systems

Distributed Systems

‣ You need many independently-operating clients (games)
‣ You have too much work to do given the time/space you have to

do it (big data)

However, if your problem grows, in some way, and upgrading
your hardware on a single node isn’t possible, you’ll find
yourself next in the world of distributed systems.

Different scenarios that may require you to go distributed:

Doesn’t have to be “big data” can
just be “many heterogeneous clients”

Think: popular multiplayer games.
Lots of frequently changing data that
everyone wants access to.

Think: massive datasets that we
want to develop insights from.

Distributed Systems

Large-scale systems for
parallel data processing

Multi-agent systems with
a network in-between.

in all cases,
tens, hundreds,
even thousands

of nodes

Things that change when
distribution happens:

Everything.

What makes distribution more different or more
difficult to reason about?

Scalability
Performance

Latency
Availability

Fault tolerance

Things we now have to consider
in the distributed case:

Reading: Introduction of Distributed Systems for Fun and Profit

(Jargon)

Scalability
Performance

Latency
Availability

Fault tolerance

Things we now have to consider
in the distributed case:

is the ability of a system,
network, or process, to
handle a growing amount
of work in a capable
manner or its ability to be
enlarged to accommodate
that growth.

Scalability
Performance

Latency
Availability

Fault tolerance

Things we now have to consider
in the distributed case:

is characterized by the
amount of useful work
accomplished by a
computer system
compared to the time and
resources used.

Scalability
Performance

Latency
Availability

Fault tolerance

Things we now have to consider
in the distributed case:

is the time between when
something happened and
the time it has an impact or
becomes visible.

Scalability
Performance

Latency
Availability

Fault tolerance

Things we now have to consider
in the distributed case:

the proportion of time a
system is in a functioning
condition. If a user cannot
access the system, it is
said to be unavailable.

Scalability
Performance

Latency
Availability

Fault tolerance

Things we now have to consider
in the distributed case:

Availability =
uptime / (uptime + downtime)

Availability % How much downtime is
allowed per year?
90% ("one nine") More than a month
99% ("two nines") Less than 4 days
99.9% ("three nines") Less than 9 hours
99.99% ("four nines") Less than an hour
99.999% ("five nines") ~ 5 minutes
99.9999% ("six nines") ~ 31 seconds

Scalability
Performance

Latency
Availability

Fault tolerance

Things we now have to consider
in the distributed case:

ability of a system to
behave in a well-defined
manner once faults occur

Things can (and do) go wrong.

In 1994, Peter Deutsch, a fellow at Sun, drafted a list
of assumptions that architects and designers of
distributed systems are likely to make, which prove
wrong in the long run–resulting in all sorts of troubles.

1. The network is reliable.
2. Latency is zero.
3. Bandwidth is infinite.
4. The network is secure.
5. Topology doesn't change.
6. There is one administrator.
7. Transport cost is zero.
8. The network is homogeneous.

Reading: Fallacies of Distributed Computing Explained, see website

The Fallacies of Distributed Computing:

Why did I just bring all of these
terms up?

Why are they relevant?

All of this sneaks into programming models
to varying degrees of intensity.

Sometimes a model doesn’t consider any of these,
leaving the programmer to imagine all of the ways

their system can go wrong, and to plan for it.

Other systems have varying degrees of solutions to
these concerns already built in, freeing the

programmer up from having to worry about them, like
fault tolerance.

Why did I just bring all of these
terms up?

Why are they relevant?

All of this sneaks into programming models
to varying degrees of intensity.

Sometimes a model doesn’t consider any of these,
leaving the programmer to imagine all of the ways

their system can go wrong, and to plan for it.

Other systems have varying degrees of solutions to
these concerns already built in, freeing the

programmer up from having to worry about them, like
fault tolerance.

Why did I just bring all of these
terms up?

Why are they relevant?

HINT: think about these terms when

reading papers and writing your writeups!

This is where abstractions and models come into
play.

Abstractions make things more manageable by
removing real-world aspects that are not relevant to
solving a problem.

Models describe the key properties of a distributed
system in a precise manner.

A good abstraction makes working with a system
easier to understand, while capturing the factors that
are relevant for a particular purpose.

Reading: Introduction of Distributed Systems for Fun and Profit

Back to programming models…

How have models and systems out there
been designed in view of all of these

potential distribution-specific issues?

A main recurring question
throughout the rest of this course:

Large-scale parallel
processing (batch)
‣ Spark, MapReduce/

Hadoop, DryadLINQ

The sort of things we’ll look at:

Languages designed
for distribution
‣ Emerald, Argus,

Linda, Orca, E

Inter-process
communication
‣ RPC & all of its

benefits and flaws

Consistency &
Coordination
‣ CRDTs, and

languages that take
consistency into
consideration

Languages
extended for
distribution
‣ CloudHaskell,

AliceML, Termite
Scheme, ML5

Message Passing
‣ The Actor Model,

Erlang, Scala

Asynchronous
Programming,
Futures & Promises
‣ Promises, MultiLisp,

Oz, F# Async/Await,
Finagle

Large-scale parallel
processing (streaming)
‣ Naiad, Twitter Heron

Outline:

What this course is about

Course structure/logistics

This course is
A research seminar course.

‣ Weekly readings/writeups
‣ Final project

There are two main components.

Grading

‣ Your weekly research paper summaries (20%)
‣ Your semi-weekly paper presentations (15%)
‣ Participation in discussion (10%)
‣ One-time minuting of the group discussion (1hr)(5%)
‣ Your final project (50%)

You will be evaluated on:

Schedule

Every 1-2 weeks will be dedicated to a specific
topic or programming model.

Structure of the course

Each topic is covered by a selection of papers.

Each student will be responsible for a specific
paper.

First half of the class:

Structure of class sessions

Each paper will have a 15-20 minute slot for a
whiteboard presentation given by 1-3 students.

Second half of the class:
Dedicated to a group discussion aimed at

aimed at understanding the differences
between each approach presented.

Weekly responsibilities

‣ Weekly reading (1 paper, assigned)
‣ Detailed summary/analysis of your

assigned paper. (~1-2pgs) to be
completed on your own!

‣ Whiteboard presentation (group or solo)
based on your writeup.

A book of articles that we’ll publish online.

Final Project

I expect it to generate a lot of interest in the
open source community!

So, please keep this in mind throughout the
course as you read/analyze/write! Your work
may be used as by developers as reference
material for years to come, so be thorough!

Final Project

A collection of extensive survey articles
representing the history and current state of the

art of a number of important topics at the
confluence of distributed systems and

programming languages.

More specifically…

Final Project
Articles (or chapters) will correspond roughly to

the weekly topics we cover together in the course.

Students may collaborate with one another on these
articles, however, each student will take the

responsibility as lead on one specific article/chapter.

Said another way, every week, we will be, together as
a class, making big steps towards the final project.

Final Project: Experimental
Evaluations

While the focus of the final project is a polished
writeup that we will work on together,

experimental evaluations/implementations are
welcome to be included as well.

If you wish to include some kind of implementation
or experimental evaluation on your topic, please

discuss and clear your ideas with me by the
appropriate deadline.

Project Organization/Timeline

‣ September 29th (or before): topics
assigned/finalized

‣ October 13th: plans for final project
experimental evaluations finalized

1-on-1s: You will be expected to briefly meet with me
roughly every 3 weeks to discuss your progress. I

expect you to begin devoting time to reading/
structuring/sketching ideas early on.

Summaries/analyses should be completed alone.
However, after submission, writeups will be posted for
the class to see/reference.

Weekly writeups

‣ a one or two sentence summary of the paper.
‣ a deeper, more extensive outline of the main points of the

paper, including for example assumptions made, arguments
presented, data analyzed, and conclusions drawn.

‣ any limitations or extensions you see for the ideas in the
paper.

‣ your opinion of the paper; primarily, the quality of the ideas
and its potential impact.

Your summaries should include the following:

More at http://heather.miller.am/teaching/cs7680/weekly-tasks.html#summariesanalyses-of-papers

http://heather.miller.am/teaching/cs7680/weekly-tasks.html#summariesanalyses-of-papers

Your writeup is due as a pull request to our class repo
on Thursdays between 5pm-6pm.

Weekly writeups

More at http://heather.miller.am/teaching/cs7680/weekly-tasks.html#summariesanalyses-of-papers

https://github.com/heathermiller/cs7680

This is to ensure that everyone writes their own writeup
without borrowing from someone else.

Repo:

http://heather.miller.am/teaching/cs7680/weekly-tasks.html#summariesanalyses-of-papers
https://github.com/heathermiller/cs7680

Typically in groups of 3, students work together to give
an informal whiteboard presentation based on their
weekly writeup.

Whiteboard presentations

We’ll devote 15 minutes at the start of every class session
to meet in groups to plan whiteboard presentations.

More at http://heather.miller.am/teaching/cs7680/weekly-tasks.html#weekly-presentations

It’s generally a good idea to jot down an outline of your
explanation, equations, or important points you’d like to
make on a blank sheet of paper before coming to class
and to carry this with you to your presentation so you have
a reference sheet of thoughts you may want to write on the
board while explaining.

http://heather.miller.am/teaching/cs7680/weekly-tasks.html#weekly-presentations

It’s expected that group discussions will provide lots of
ideas and discussion points that will be very useful to
the final writeup.

Group discussion: minutes

I will make audio recordings of the discussion section of
the course, and each week 1 student will be in charge of
the week’s recording.

If you’re minuting for the current session, you are not
required to submit a writeup or do a presentation at
the next session (though you still ought to read your
assigned paper). Your minutes are due as a PR to the
class repo by the start of the next class.

Things to do right now:

‣ Send me your github username so I can
add you to the course repo.

‣ Select a research paper to read for next
week.

‣ Sign up to minute

Exceptionally for next week:
Writeups are due at noon on September 15!

(So I can give everyone feedback on the first
submitted writeups of the semester.)

Note for next week…

