
Verisign Public 92

Kafka Consumers

Verisign Public

Reading data from Kafka

• You use Kafka “consumers” to write data to Kafka brokers.
• Available for JVM (Java, Scala), C/C++, Python, Ruby, etc.
• The Kafka project only provides the JVM implementation.

• Has risk that a new Kafka release will break non-JVM clients.

• Examples will be shown later in the “Example Kafka apps” section.
• Three API options for JVM users:

1. High-level consumer API <<< in most cases you want to use this one!
2. Simple consumer API
3. Hadoop consumer API

• Most noteworthy: The “simple” API is anything but simple. -
• Prefer to use the high-level consumer API if it meets your needs (it should).
• Counter-example: Kafka spout in Storm 0.9.2 uses simple consumer API to

integrate well with Storm’s model of guaranteed message processing.

93

https://kafka.apache.org/documentation.html#highlevelconsumerapi
https://kafka.apache.org/documentation.html#simpleconsumerapi

Verisign Public

Reading data from Kafka

• Consumers pull from Kafka (there’s no push)
• Allows consumers to control their pace of consumption.
• Allows to design downstream apps for average load, not peak load (cf. Loggly talk)

• Consumers are responsible to track their read positions aka “offsets”
• High-level consumer API: takes care of this for you, stores offsets in ZooKeeper
• Simple consumer API: nothing provided, it’s totally up to you

• What does this offset management allow you to do?
• Consumers can deliberately rewind “in time” (up to the point where Kafka prunes), e.g. to

replay older messages.
• Cf. Kafka spout in Storm 0.9.2.

• Consumers can decide to only read a specific subset of partitions for a given topic.
• Cf. Loggly’s setup of (down)sampling a production Kafka topic to a manageable volume for testing

• Run offline, batch ingestion tools that write (say) from Kafka to Hadoop HDFS every hour.
• Cf. LinkedIn Camus, Pinterest Secor

94

http://www.youtube.com/watch?v=LpNbjXFPyZ0

Verisign Public

Reading data from Kafka

• Important consumer configuration settings

95

group.id assigns an individual consumer to a “group”

zookeeper.connect to discover brokers/topics/etc., and to store consumer
state (e.g. when using the high-level consumer API)

fetch.message.max.bytes number of message bytes to (attempt to) fetch for each
partition; must be >= broker’s message.max.bytes

Verisign Public

Reading data from Kafka

• Consumer “groups”
• Allows multi-threaded and/or multi-machine consumption from Kafka topics.
• Consumers “join” a group by using the same group.id

• Kafka guarantees a message is only ever read by a single consumer in a group.
• Kafka assigns the partitions of a topic to the consumers in a group so that each partition is

consumed by exactly one consumer in the group.

• Maximum parallelism of a consumer group: #consumers (in the group) <= #partitions

96

Verisign Public

Guarantees when reading data from Kafka

• A message is only ever read by a single consumer in a group.
• A consumer sees messages in the order they were stored in the log.
• The order of messages is only guaranteed within a partition.

• No order guarantee across partitions, which includes no order guarantee per-topic.

• If total order (per topic) is required you can consider, for instance:
• Use #partition = 1. Good: total order. Bad: Only 1 consumer process at a time.

• “Add” total ordering in your consumer application, e.g. a Storm topology.

• Some gotchas:
• If you have multiple partitions per thread there is NO guarantee about the order you

receive messages, other than that within the partition the offsets will be sequential.
• Example: You may receive 5 messages from partition 10 and 6 from partition 11, then 5

more from partition 10 followed by 5 more from partition 10, even if partition 11 has data
available.

• Adding more processes/threads will cause Kafka to rebalance, possibly changing
the assignment of a partition to a thread (whoops).

97

Verisign Public

Rebalancing: how consumers meet brokers

• Remember?

• The assignment of brokers – via the partitions of a topic – to
consumers is quite important, and it is dynamic at run-time.

98

Verisign Public

Rebalancing: how consumers meet brokers

• Why “dynamic at run-time”?
• Machines can die, be added, …
• Consumer apps may die, be re-configured, added, …

• Whenever this happens a rebalancing occurs.
• Rebalancing is a normal and expected lifecycle event in Kafka.
• But it’s also a nice way to shoot yourself or Ops in the foot.

• Why is this important?
• Most Ops issues are due to 1) rebalancing and 2) consumer lag.
• So Dev + Ops must understand what goes on.

99

Verisign Public

Rebalancing: how consumers meet brokers

• Rebalancing?
• Consumers in a group come into consensus on which consumer is

consuming which partitionsÆ required for distributed consumption
• Divides broker partitions evenly across consumers, tries to reduce the

number of broker nodes each consumer has to connect to

• When does it happen? Each time:
• a consumer joins or leaves a consumer group, OR
• a broker joins or leaves, OR
• a topic “joins/leaves” via a filter, cf. createMessageStreamsByFilter()

• Examples:
• If a consumer or broker fails to heartbeat to ZK Æ rebalance!
• createMessageStreams() registers consumers for a topic, which results

in a rebalance of the consumer-broker assignment.

100

