
Verisign Public 72

Kafka Producers

Verisign Public

Writing data to Kafka

• You use Kafka “producers” to write data to Kafka brokers.
• Available for JVM (Java, Scala), C/C++, Python, Ruby, etc.
• The Kafka project only provides the JVM implementation.

• Has risk that a new Kafka release will break non-JVM clients.

• A simple example producer:

• Full details at:
• https://cwiki.apache.org/confluence/display/KAFKA/0.8.0+Producer+Example

73

https://cwiki.apache.org/confluence/display/KAFKA/0.8.0+Producer+Example

Verisign Public

73

Kafka Producers

 • Producer picks which partition to send record to per topic
• Producers send records to topics

• Can be done round-robin

• Can be based on priority

• Typically based on key of record
• Kafka default partitioner for Java uses hash of keys to choose partitions, or a
 round-robin strategy if no key

 Remember! Producer picks partition.

Verisign Public

73

Kafka Producers

• Producers write at their own cadence so order of records
 cannot be guaranteed across partitions.

• Producer configures consistency level (ack=0, ack=all, ack=1)

• Example: have all the events of a certain employeeId go to the same partition.

• If order within a partition is not needed, a round-robin partition strategy can be used
 so records are evenly distributed across partitions.

• Producers pick the partition such that records/messages go
 to a given same partition based on the data (usually key).

Verisign Public

Producers

• The Java producer API is very simple.
• We’ll talk about the slightly confusing details next. -

74

Verisign Public

76

 Constructing a Producer

private Properties kafkaProps = new Properties();
kafkaProps.put("bootstrap.servers","broker1:9092,broker2:9092");

kafkaProps.put("key.serializer",
 "org.apache.kafka.common.serialization.StringSerializer");

kafkaProps.put("value.serializer",
 "org.apache.kafka.common.serialization.StringSerializer");

producer = new KafkaProducer<String, String>(kafkaProps);

 We instantiate a Properties object.

1

1

Verisign Public

76

 Constructing a Producer

private Properties kafkaProps = new Properties();
kafkaProps.put("bootstrap.servers","broker1:9092,broker2:9092");

kafkaProps.put("key.serializer",
 "org.apache.kafka.common.serialization.StringSerializer");

kafkaProps.put("value.serializer",
 "org.apache.kafka.common.serialization.StringSerializer");

producer = new KafkaProducer<String, String>(kafkaProps);

 Since we plan on using strings for message key and value, we use the
built-in StringSerializer.

2

2

Verisign Public

76

 Constructing a Producer

private Properties kafkaProps = new Properties();
kafkaProps.put("bootstrap.servers","broker1:9092,broker2:9092");

kafkaProps.put("key.serializer",
 "org.apache.kafka.common.serialization.StringSerializer");

kafkaProps.put("value.serializer",
 "org.apache.kafka.common.serialization.StringSerializer");

producer = new KafkaProducer<String, String>(kafkaProps);

Here we create a new producer by setting the appropriate
key and value types and passing the Properties object.

3

3

Verisign Public

76

Ways to send messages

We send a message to the server and don’t really care if it
arrives succesfully or not. Most of the time, it will arrive
successfully, since Kafka is highly available and the producer
will retry sending messages automatically. However, some
messages will get lost using this method.

We call the send() method with a callback function, which gets
triggered when it receives a response from the Kafka broker.

Asynchronous send

Fire-and-forget

We send a message, the send() method returns a Future
object, and we use get() to wait on the future and see if the
send() was successful or not.

Synchronous send

Verisign Public

76

Sending a Message to Kafka

 ProducerRecord<String, String> record =
 new ProducerRecord<>("CustomerCountry", "Precision Products", "France");

try {
 producer.send(record);
 } catch (Exception e) {
 e.printStackTrace();
}

The producer accepts ProducerRecord objects, so we start by
creating one. ProducerRecord has multiple constructors,
which we will discuss later. Here we use one that requires the
name of the topic we are sending data to, which is always a
string, and the key and value we are sending to Kafka, which
in this case are also strings. The types of the key and value
must match our serializer and producer objects.

1

1

Verisign Public

76

Sending a Message to Kafka

 ProducerRecord<String, String> record =
 new ProducerRecord<>("CustomerCountry", "Precision Products", "France");

try {
 producer.send(record);
 } catch (Exception e) {
 e.printStackTrace();
}

We use the producer object send() method to send the
ProducerRecord. The send() method returns a Java Future
object with RecordMetadata, but since we simply ignore the
returned value, we have no way of knowing whether the
message was sent successfully or not. This method of sending
messages can be used when dropping a message silently is
acceptable. This is not typically the case in production
applications.

2

2

Verisign Public

76

Sending a Message to Kafka

 ProducerRecord<String, String> record =
 new ProducerRecord<>("CustomerCountry", "Precision Products", "France");

try {
 producer.send(record);
 } catch (Exception e) {
 e.printStackTrace();
}

While we ignore errors that may occur while sending
messages to Kafka brokers or in the brokers themselves, we
may still get an exception if the producer encountered errors
before sending the message to Kafka. Those can be a
SerializationException when it fails to serialize the message, a
BufferExhaustedException or TimeoutException if the buffer is
full, or an InterruptException if the sending thread was
interrupted.

3

3

Verisign Public

Producers

• Two types of producers: “async” and “sync”

• Same API and configuration, but slightly different semantics.
• What applies to a sync producer almost always applies to async, too.
• Async producer is preferred when you want higher throughput.

• Important configuration settings for either producer type:

75

client.id identifies producer app, e.g. in system logs

producer.type async or sync

request.required.acks acking semantics, cf. next slides

serializer.class configure encoder, cf. slides on Avro usage

metadata.broker.list cf. slides on bootstrapping list of brokers

Verisign Public

Sync producers

76

• Most important thing to remember: producer.send() will block!

Verisign Public

76

 ProducerRecord<String, String> record =
 new ProducerRecord<>("CustomerCountry", "Precision Products", "France");

 e.printStackTrace();
}

try {
 producer.send(record).get();
 } catch (Exception e) {

Here, we are using Future.get() to wait for a reply from Kafka.
This method will throw an exception if the record is not sent
successfully to Kafka. If there were no errors, we will get a
RecordMetadata object that we can use to retrieve the offset
the message was written to.

Sending a Message to Kafka Synchronously

1

1

Verisign Public

76

 ProducerRecord<String, String> record =
 new ProducerRecord<>("CustomerCountry", "Precision Products", "France");

 e.printStackTrace();
}

try {
 producer.send(record).get();
 } catch (Exception e) {

If there were any errors before sending data to Kafka, while
sending, if the Kafka brokers returned a nonretriable
exceptions or if we exhausted the available retries, we will
encounter an exception. In this case, we just print any
exception we ran into.

Sending a Message to Kafka Synchronously

2

2

Verisign Public

Async producer

• Sends messages in background = no blocking in client.
• Provides more powerful batching of messages (see later).
• Wraps a sync producer, or rather a pool of them.

• Communication from async->sync producer happens via a queue.
• Which explains why you may see kafka.producer.async.QueueFullException

• Each sync producer gets a copy of the original async producer config,
including the request.required.acks setting (see later).

• Implementation details: Producer, async.AsyncProducer,
async.ProducerSendThread, ProducerPool, async.DefaultEventHandler#send()

77

https://github.com/kafka-dev/kafka/blob/master/core/src/main/scala/kafka/producer/Producer.scala
https://github.com/kafka-dev/kafka/blob/master/core/src/main/scala/kafka/producer/async/AsyncProducer.scala
https://github.com/kafka-dev/kafka/blob/master/core/src/main/scala/kafka/producer/async/ProducerSendThread.scala
https://github.com/kafka-dev/kafka/blob/master/core/src/main/scala/kafka/producer/ProducerPool.scala
https://github.com/kafka-dev/kafka/blob/master/core/src/main/scala/kafka/producer/async/DefaultEventHandler.scala

Verisign Public

77

Sending a Message Asynchronously

Suppose the network roundtrip time between our application
and the Kafka cluster is 10ms.

If we wait for a reply after sending each message, sending 100
messages will take around 1 second. (Synchronous)

On the other hand, if we just send all our messages and not
wait for any replies, then sending 100 messages will barely take
any time at all. (Fire-and-Forget)

On the other hand, we do need to know when we failed to send a
message completely so we can throw an exception, log an error,
or perhaps write the message to an “errors” file for later analysis.
In order to send messages asynchronously and still handle error
scenarios, the producer supports adding a callback when
sending a record. (Asynchronous)

Verisign Public

76

 Sending a Message to Kafka Asynchronously
private class DemoProducerCallback implements Callback {
 @Override
 public void onCompletion(RecordMetadata recordMetadata, Exception e) {
 if (e != null) {
 e.printStackTrace();
 }
 }
}

ProducerRecord<String, String> record =
 new ProducerRecord<>("CustomerCountry", "Biomedical Materials", "USA");

producer.send(record, new DemoProducerCallback());

To use callbacks, you need a class that implements the
org.apache.kafka.clients.producer.Callback interface, which
has a single function—onCompletion().

1

1

Verisign Public

76

 Sending a Message to Kafka Asynchronously
private class DemoProducerCallback implements Callback {
 @Override
 public void onCompletion(RecordMetadata recordMetadata, Exception e) {
 if (e != null) {
 e.printStackTrace();
 }
 }
}

ProducerRecord<String, String> record =
 new ProducerRecord<>("CustomerCountry", "Biomedical Materials", "USA");

producer.send(record, new DemoProducerCallback());

If Kafka returned an error, onCompletion() will have a nonnull
exception. Here we “handle” it by printing, but production code
will probably have more robust error handling functions.

2

2

Verisign Public

76

 Sending a Message to Kafka Asynchronously
private class DemoProducerCallback implements Callback {
 @Override
 public void onCompletion(RecordMetadata recordMetadata, Exception e) {
 if (e != null) {
 e.printStackTrace();
 }
 }
}

ProducerRecord<String, String> record =
 new ProducerRecord<>("CustomerCountry", "Biomedical Materials", "USA");

producer.send(record, new DemoProducerCallback());

And we pass a Callback object along when sending the record.

3

3

Verisign Public

Producers

• Two aspects worth mentioning because they significantly influence
Kafka performance:

1. Message acking
2. Batching of messages

79

Verisign Public

1) Message acking

• Background:
• In Kafka, a message is considered committed when “any required” ISR (in-

sync replicas) for that partition have applied it to their data log.
• Message acking is about conveying this “Yes, committed!” information back

from the brokers to the producer client.
• Exact meaning of “any required” is defined by request.required.acks.

• Only producers must configure acking
• Exact behavior is configured via request.required.acks, which

determines when a produce request is considered completed.
• Allows you to trade latency (speed) <-> durability (data safety).
• Consumers: Acking and how you configured it on the side of producers do

not matter to consumers because only committed messages are ever given
out to consumers. They don’t need to worry about potentially seeing a
message that could be lost if the leader fails.

80

Verisign Public

1) Message acking

• Typical values of request.required.acks
• 0: producer never waits for an ack from the broker.

• Gives the lowest latency but the weakest durability guarantees.

• 1: producer gets an ack after the leader replica has received the data.
• Gives better durability as the we wait until the lead broker acks the request. Only msgs that

were written to the now-dead leader but not yet replicated will be lost.

• Gives the best durability as Kafka guarantees that no data will be lost as long as at least

one ISR remains.

• Beware of interplay with request.timeout.ms!
• "The amount of time the broker will wait trying to meet the `request.required.acks`

requirement before sending back an error to the client.”
• Caveat: Message may be committed even when broker sends timeout error to client

(e.g. because not all ISR ack’ed in time). One reason for this is that the producer
acknowledgement is independent of the leader-follower replication, and ISR’s send
their acks to the leader, the latter of which will reply to the client.

81

be
tte

r
la

te
nc

y
be

tte
r

du
ra

bi
lity • all: producer gets an ack after all ISR have received the data.

Verisign Public

2) Batching of messages

• Batching improves throughput
• Tradeoff is data loss if client dies before pending messages have been sent.

• You have two options to “batch” messages in 0.8:
1. Use send(listOfMessages).

• Sync producer: will send this list (“batch”) of messages right now. Blocks!
• Async producer: will send this list of messages in background “as usual”, i.e.

according to batch-related configuration settings. Does not block!

2. Use send(singleMessage) with async producer.

• For async the behavior is the same as send(listOfMessages).

82

Verisign Public

2) Batching of messages

• Option 1: How send(listOfMessages) works behind the scenes

• The original list of messages is partitioned (randomly if the default
partitioner is used) based on their destination partitions/topics, i.e. split into
smaller batches.

• Each post-split batch is sent to the respective leader broker/ISR (the
individual send()’s happen sequentially), and each is acked by its
respective leader broker according to request.required.acks.

83

partitioner.class p6 p1 p4 p4 p6

p4 p4

p6 p6

p1

p4 p4

p6 p6

p1

Current leader ISR (broker) for partition 4send()

Current leader ISR (broker) for partition 6send()

…and so on…

Verisign Public

2) Batching of messages

• Option 2: Async producer
• Standard behavior is to batch messages
• Semantics are controlled via producer configuration settings

• batch.num.messages

• queue.buffering.max.ms + queue.buffering.max.messages
• queue.enqueue.timeout.ms

• And more, see producer configuration docs.

• Remember: Async producer simply wraps sync producer!
• But the batch-related config settings above have no effect on “true”

sync producers, i.e. when used without a wrapping async producer.

84

http://kafka.apache.org/documentation.html#producerconfigs

Verisign Public

Write operations behind the scenes

• When writing to a topic in Kafka, producers write directly to the
partition leaders (brokers) of that topic

• Remember: Writes always go to the leader ISR of a partition!

• This raises two questions:
• How to know the “right” partition for a given topic?
• How to know the current leader broker/replica of a partition?

86

Verisign Public

• In Kafka, a producer – i.e. the client – decides to which target
partition a message will be sent.

• Can be random ~ load balancing across receiving brokers.
• Can be semantic based on message “key”, e.g. by user ID or domain

name.
• Here, Kafka guarantees that all data for the same key will go to the same

partition, so consumers can make locality assumptions.

1) How to know the “right” partition when sending?

87

Verisign Public

2) How to know the current leader of a partition?

• Producers: broker discovery aka bootstrapping
• Producers don’t talk to ZooKeeper, so it’s not through ZK.
• Broker discovery is achieved by providing producers with a “bootstrapping”

broker list, cf. metadata.broker.list
• These brokers inform the producer about all alive brokers and where to find

current partition leaders. The bootstrap brokers do use ZK for that.

90

