Kafka Core Concepts

powered by VERISIGN 0

Kafka core concepts

- Records have a key (optional), value, and timestamp.
- Topic a stream of records (e.g., orders), feed name

- Log topic storage on disk
- Partition / segments (parts of topic log)

- Producer API to produce streams of records

. Consumer APl to consume streams of records

- Broker Kafka server that runs in a Kafka Cluster.
Brokers form a cluster. Acluster consists of many
Kafka Brokers on many servers.

. ZooKeeper Does coordination of brokers/cluster
topology. Consistent file system for configuration
information and leadership election for Broker
Topic Partition Leaders.

Verisign Public powered by VERISIGN G I

A first look

- The who is who
- Producers write data to brokers.
- Consumers read data from brokers.
- All this is distributed.

.- The data
. Data is stored in topics.

producer

I

producer]‘

producer TI
|
L

\'J‘/

kafka
cluster

m

consumer

consumer

consumer

] |

) |

- Topics are split into partitions, which are replicated.

Verisign Public powered by VERISIGN G

A first look

Kafka cluster px | active replica (id y) of partition x
Ry | for topic "zerg.hydra"

px | active replica (id y) of partition x,
Ry | this broker is leader for that partition

——
/O broker1)\
PO P2

R1 R1
. ff \ -
" broker2)
producer ol e consumer
("zerg.hydra") ("zerg.hydra")
\<) broker3)/
P1 P2
R3 R3
Brokers ——)

— 7| ZooKeeper

http://www.michael-noll.com/blog/2013/03/13/running-a-multi-broker-apache-kafka-cluster-on-a-single-node/

Verisign Public powered by VERISIGN e

http://www.michael-noll.com/blog/2013/03/13/running-a-multi-broker-apache-kafka-cluster-on-a-single-node/

Topics

- Topic: feed name to which messages are published
- Example: “zerg.hydra”

Kafka prunes “head” based on age or max size or “key”

—

— Producer A1
Kafka topic Producer A2

Producer An
Older msgs

Newer msgs

Producers always append to ‘“tail”
(think: append to a file)

Broker(s)

Verisign Public powered by VERISIGN @

23

Topics

Consumer group C1

Consumers use an “offset pointer” to
track/control their read progress
(and decide the pace of consumption)

Consumer group C2

_ Producer A1
v Producer A2

Producer An
Older msgs

Newer msgs

Producers always append to ‘“tail”
(think: append to a file)

Broker(s)

Verisign Public

powered by VERISIGN @ 24

Topics

TOAP\C (es. vser cLicks)

M-

Tharizion 1 1@{4| 2| 3|%[$]¢

enerrio | [STRBIE]: < i RITES
PARTZ]T[DN olal2 [3lvls]e | ‘J:
OLD - =~ NEW
e

4
N
2 3 L s

+ KEY | VALVE B KEY [VALUE —HKEY VALUE —IBIKEY VALUE 1

—

http://www.michael-noll.com/blog/2013/03/13/running-a-multi-broker-apache-kafka-cluster-on-a-single-node/

Verisign Public powered by VERISIGN 0-

http://www.michael-noll.com/blog/2013/03/13/running-a-multi-broker-apache-kafka-cluster-on-a-single-node/

Topics

. Creating a topic
. CLI

$ kafka-topics.sh --zookeeper zookeeperl:2181 --create --topic zerg.hydra \

--partitions 3 --replication-factor 2 \
--config x=y

. APl
https://github.com/miguno/kafka-storm-
starter/blob/develop/src/main/scala/com/miguno/kafkastorm/storm/KafkaSt
ormDemo.scala

. Auto-create via auto.create.topics.enable = true

- Modifying a topic

. https://kafka.apache.org/documentation.html#basic ops modify topic

Verisign Public powered by VERISIGN @ 25

https://github.com/miguno/kafka-storm-starter/blob/develop/src/main/scala/com/miguno/kafkastorm/storm/KafkaStormDemo.scala
https://kafka.apache.org/documentation.html#basic_ops_modify_topic

Partitions

- A topic consists of partitions.

- Partition: ordered + immutable sequence of messages
that is continually appended to

Anatomy of a Topic

Partition 111 1_ E

0 0123456789012:\
__l
- |
Part1mon ol1l2|3lals|e|7|slo! = /Writes
|
__l
Partition 11111
|
]

2 0123456789012

Old » New

Verisign Public powered by VERISIGN @ o

Partitions

- #partitions of a topic is configurable

- #partitions determines max consumer (group) parallelism
. Cf. parallelism of Storm’s KafkaSpout via builder.setSpout(,,N)

Kafka Cluster
Server 1 Server 2
! P1 (| P2 |

P3
C3

C4 C5 C6

ok

Consumer Group A

Consumer Group B——

- Consumer group A, with 2 consumers, reads from a 4-partition topic

- Consumer group B, with 4 consumers, reads from the same topic

Verisign Public powered by VERISIGN G .

Partition offsets

.- Offset: messages in the partitions are each assigned a
unique (per partition) and sequential id called the offset

. Consumers track their pointers via (offset, partition, topic) tuples

Consumer group C1

Partition 111 {E
0 0 203 (41|5]|6|7(8]9 |

L 2.\
__'
Pa":m“ Eﬂz 3|y|5|6|7]8lo! - Writes
v _ -1 /
Partition 3H5 1(1(1.

2 0|12,

Old » New

Verisign Public powered by VERISIGN @ "

Partition offsets

Partition

0 0|1]2/3|4|5|6|7]|8]9]10

11

Producer
12 K

Consumer Group B

Consumer Group A

Consumer groups remember offset where they left off.
Consumers groups each have their own offset.

Producer writing to offset 12 of Partition 0 while...
Consumer Group A is reading from offset 6.
Consumer Group B is reading from offset 9.

http://www.michael-noll.com/blog/2013/03/13/running-a-multi-broker-apache-kafka-cluster-on-a-single-node/

Verisign Public powered by VERISIGN @

22

http://www.michael-noll.com/blog/2013/03/13/running-a-multi-broker-apache-kafka-cluster-on-a-single-node/

Replicas of a partition

A partition might be assigned to multiple brokers, which will
result in the partition being replicated. This provides redundancy

of messages in the partition, such that another broker can take
over leadership if there is a broker failure.

- Replicas: “backups” of a partition
- They exist solely to prevent data loss.
- Replicas are never read from, never written to.

- They do NOT help to increase producer or consumer parallelism!

- Kafka tolerates (numReplicas - 1) dead brokers before losing data
- LinkedIn: numReplicas == 2 # 1 broker can die

Verisign Public

powered by VERISIGN G 29

Topics vs. Partitions vs. Replicas

broker 1

broker 2

broker 3

broker 4

broker 5

A :
Y d.pi2 Pond | —
I h el 1S |
' ™ " /M
Ll - o / 'L
the Sameé 4ds T_}.(‘ 'I cH t,r}f).‘;
1 Lol a4 sts it bvol .
the brokKer that hosts it brokKey ¢

213

| | nlisal PPy | | LA
!'(, Say; The rePli ation taltor of a toPil set ner
)
/
o Ll | » ~ 4 y i Lisal oliz A | npl rndetd i
~NatT¥Kd v.l.‘ Create 2 wdentilal ‘.".’:'I'L:p of ¢afh Partition and

) L]
Cath Partition
Piale hosSe vePlicas on r:\'dln-:bl(DY oKeEYsS 1y ne CiusTLy

[)

hads an L

http://www.michael-noll.com/blog/2013/03/13/running-a-multi-broker-apache-kafka-cluster-on-a-single-node/

30

Verisign Public powered by VERISIGN 0-

http://www.michael-noll.com/blog/2013/03/13/running-a-multi-broker-apache-kafka-cluster-on-a-single-node/

Propagating writes across replicas

Record is considered "committed"
when all ISRs for partition
wrote to their log.

Only committed records are 1) Write record
readable from consumer

Kafka Broker 0 Kafka Broker 1
2) Replicate
record

2) Replicate

record

Leader Red
Follower Blue

Kafka Broker 2

ISR = in-sync replica

Verisign Public powered by VERISIGN G:"

30

http://www.michael-noll.com/blog/2013/03/13/running-a-multi-broker-apache-kafka-cluster-on-a-single-node/

Inspecting the current state of a topic

. --describe the topic

$ kafka-topics.sh --zookeeper zookeeperl:2181 --describe --topic zerg.hydra
Topic:zerg2.hydra PartitionCount:3 ReplicationFactor:2 Configs:
Topic: zerg2.hydra Partition: © Leader: 1 Replicas: 1,0 Isr: 1,0

Topic: zerg2.hydra Partition: 1 Leader: © Replicas: 0,1 Isr: 0,1
Topic: zerg2.hydra Partition: 2 Leader: 1 Replicas: 1,0 Isr: 1,0

- Leader: brokerlD of the currently elected leader broker
- Replica ID’s = broker ID’s
- ISR = “in-sync replica”, replicas that are in sync with the leader

- In this example:
- Broker O is leader for partition 1.
- Broker 1 is leader for partitions 0 and 2.
- All replicas are in-sync with their respective leader partitions.

powered by VERISIGN ()

Scaling

How can Kafka scale if multiple producers and
consumers read/write to the same Kafka Topic Log?

- Writes fast: sequential writes to filesystem are fast
(700 MB or more per second)

- Scales writes and reads by sharding

- Topic logs into Partitions (parts of a Topic Log)

- Topic logs can be split into multiple Partitions on
different machines/ different disks.

- Multiple Producers can write to different Partitions of the
same Topic.

- Multiple Consumer Groups can read from different
partitions efficiently.

Verisign Public powered by VERISIGN G

32

