
Verisign Public

19

Kafka Core Concepts

Verisign Public

20

Kafka core concepts

• Records have a key (optional), value, and timestamp.
• Topic a stream of records (e.g., orders), feed name

• Log topic storage on disk

 • Partition / segments (parts of topic log)

• ZooKeeper Does coordination of brokers/cluster
 topology. Consistent file system for configuration
 information and leadership election for Broker
 Topic Partition Leaders.

• Broker Kafka server that runs in a Kafka Cluster.
 Brokers form a cluster. A cluster consists of many
 Kafka Brokers on many servers.

• Consumer API to consume streams of records
• Producer API to produce streams of records

Verisign Public

A first look

• The who is who
• Producers write data to brokers.
• Consumers read data from brokers.
• All this is distributed.

• The data
• Data is stored in topics.
• Topics are split into partitions, which are replicated.

21

Verisign Public

A first look

22

http://www.michael-noll.com/blog/2013/03/13/running-a-multi-broker-apache-kafka-cluster-on-a-single-node/

http://www.michael-noll.com/blog/2013/03/13/running-a-multi-broker-apache-kafka-cluster-on-a-single-node/

Verisign Public

Broker(s)

Topics

23

ne
w

Producer A1
Producer A2

Producer An
…

Producers always append to “tail”
(think: append to a file)

…

Kafka prunes “head” based on age or max size or “key”

Older msgs Newer msgs

Kafka topic

• Topic: feed name to which messages are published
• Example: “zerg.hydra”

Verisign Public

Broker(s)

Topics

24

ne
w

Producer A1
Producer A2

Producer An
…

Producers always append to “tail”
(think: append to a file)

…

Older msgs Newer msgs

Consumer group C1 Consumers use an “offset pointer” to
track/control their read progress

(and decide the pace of consumption)
Consumer group C2

Verisign Public 22

http://www.michael-noll.com/blog/2013/03/13/running-a-multi-broker-apache-kafka-cluster-on-a-single-node/

Topics

http://www.michael-noll.com/blog/2013/03/13/running-a-multi-broker-apache-kafka-cluster-on-a-single-node/

Verisign Public

Topics

• Creating a topic
• CLI

• API
https://github.com/miguno/kafka-storm-
starter/blob/develop/src/main/scala/com/miguno/kafkastorm/storm/KafkaSt
ormDemo.scala

• Auto-create via auto.create.topics.enable = true

• Modifying a topic
• https://kafka.apache.org/documentation.html#basic_ops_modify_topic

25

$ kafka-topics.sh --zookeeper zookeeper1:2181 --create --topic zerg.hydra \
--partitions 3 --replication-factor 2 \
--config x=y

https://github.com/miguno/kafka-storm-starter/blob/develop/src/main/scala/com/miguno/kafkastorm/storm/KafkaStormDemo.scala
https://kafka.apache.org/documentation.html#basic_ops_modify_topic

Verisign Public

Partitions

26

• A topic consists of partitions.
• Partition: ordered + immutable sequence of messages

that is continually appended to

Verisign Public

Partitions

27

• #partitions of a topic is configurable
• #partitions determines max consumer (group) parallelism

• Cf. parallelism of Storm’s KafkaSpout via builder.setSpout(,,N)

• Consumer group A, with 2 consumers, reads from a 4-partition topic
• Consumer group B, with 4 consumers, reads from the same topic

Verisign Public

Partition offsets

28

• Offset: messages in the partitions are each assigned a
unique (per partition) and sequential id called the offset

• Consumers track their pointers via (offset, partition, topic) tuples

Consumer group C1

Verisign Public 22

http://www.michael-noll.com/blog/2013/03/13/running-a-multi-broker-apache-kafka-cluster-on-a-single-node/

Partition offsets

http://www.michael-noll.com/blog/2013/03/13/running-a-multi-broker-apache-kafka-cluster-on-a-single-node/

Verisign Public

Replicas of a partition

29

A partition might be assigned to multiple brokers, which will
result in the partition being replicated. This provides redundancy
of messages in the partition, such that another broker can take
over leadership if there is a broker failure.

• Replicas: “backups” of a partition
• They exist solely to prevent data loss.
• Replicas are never read from, never written to.

• They do NOT help to increase producer or consumer parallelism!

• Kafka tolerates (numReplicas - 1) dead brokers before losing data
• LinkedIn: numReplicas == 2 ! 1 broker can die

Verisign Public

Topics vs. Partitions vs. Replicas

30

http://www.michael-noll.com/blog/2013/03/13/running-a-multi-broker-apache-kafka-cluster-on-a-single-node/

http://www.michael-noll.com/blog/2013/03/13/running-a-multi-broker-apache-kafka-cluster-on-a-single-node/

Verisign Public

30

Propagating writes across replicas

 ISR = in-sync replica

http://www.michael-noll.com/blog/2013/03/13/running-a-multi-broker-apache-kafka-cluster-on-a-single-node/

Verisign Public

Inspecting the current state of a topic

• --describe the topic

• Leader: brokerID of the currently elected leader broker
• Replica ID’s = broker ID’s

• ISR = “in-sync replica”, replicas that are in sync with the leader

• In this example:
• Broker 0 is leader for partition 1.
• Broker 1 is leader for partitions 0 and 2.
• All replicas are in-sync with their respective leader partitions.

31

$ kafka-topics.sh --zookeeper zookeeper1:2181 --describe --topic zerg.hydra
Topic:zerg2.hydra PartitionCount:3 ReplicationFactor:2 Configs:

Topic: zerg2.hydra Partition: 0 Leader: 1 Replicas: 1,0 Isr: 1,0
Topic: zerg2.hydra Partition: 1 Leader: 0 Replicas: 0,1 Isr: 0,1
Topic: zerg2.hydra Partition: 2 Leader: 1 Replicas: 1,0 Isr: 1,0

Verisign Public

32

Scaling

How can Kafka scale if multiple producers and
consumers read/write to the same Kafka Topic Log?

• Writes fast: sequential writes to filesystem are fast
 (700 MB or more per second)

• Scales writes and reads by sharding
• Topic logs into Partitions (parts of a Topic Log)
• Topic logs can be split into multiple Partitions on
 different machines/ different disks.

• Multiple Producers can write to different Partitions of the
 same Topic.
• Multiple Consumer Groups can read from different
 partitions efficiently.

