Publish-Subscribe

Heather Miller


Heather Miller



Publish-Subscribe: Why?

Recall the Big Data Ecosystem Table

The Big-Data Ecosystem Table

Incomplete-but-useful st of big-data related projects packed into a JSON dataset.

« Github repository:

« Raw JSON data: http:/bigdata.andreamostosi.name/data json
« Original page on my blog: http://blog.andreamostosi.name/big-data/

by Andrea Mostosi (http:/blog.andreamostosi.name)

Frameworks
and HOFS (distributed fil system)
Distributed Programming
AddThis. It ingests.
streams (think log
data. These trees can v ) as partof
(big quertes), or to support live consoles on websites (ots of queries).
Akela Mozilla's utity library for Hadoop, HBase, Pig, etc.
Amazon Lambda
resources for you
AMPorowd
AMPLab G-OLA
AMPLab SIMR ‘Apache Spark was developed thinking in Apache YARN. However, up to now, it has been reltively hard to

clusters. ie.

Github

Website

Website

Website

Website

Website

SIMR on GitHub



Publish-Subscribe: Why?

Recall the Big Data Ecosystem Table..

Apache Spark Sparkfits 1. Apache Incubator Spark

However,

part of Spark 1. Apache Spark Streaming
Apache Stom 1. Stom Project
age 2
y

Apache Tez 1. Apache Toz

task DAGS and runs natively on Apache Hadoop YARN.
Apache Twil Tilis 1. Apache Twil Incubator

pplcat il

. which

means YARN
Arvados 1. Website
Blaze 1. Website
Cascalog data processing and querying ibrary 1. Cascalog
Gheetah igr 3 1. Paper

Appl 1. Gascanding

applications on Apache Hadoop.

y 1 Project




Publish-Subscribe: Why?

Recall the Big Data Ecosystem Table...

There are many frameworks/tools/etc in this ecosystem that are often
used to implement separate microservices.



Publish-Subscribe: Why?

Recall the Big Data Ecosystem Table...

There are many frameworks/tools/etc in this ecosystem that are often
used to implement separate microservices.

However, microservices need to cooperate. For example, individual
microservices typically need to:

» take tasks from some sort of list
» perform the task
» announce completion



Introducing Kafka

Can be thought of as a distributed publish-subscribe messaging system.

Features:

High Availability

High Throughput

Scalability

Durability (message still received, even if queue is offline)

vV vyYyyewy



Introducing Kafka

Can be thought of as a distributed publish-subscribe messaging system.

Features:

High Availability

High Throughput

Scalability

Durability (message still received, even if queue is offline)

vV vyYyyewy

The main value Kafka provides to data pipelines is its ability to
serve as a very large, reliable buffer between various stages in the
pipeline, effectively decoupling producers and consumers of data
within the pipeline. This decoupling, combined with reliability,
security, and efficiency, makes Kafka a good fit for most data
pipelines.



Kafka Design Goals

Built at LinkedIn. Motivation:

“A unified platform for handling all the real-time data feeds a
large company might have.”

Must haves:

v

High throughput to support high volume event feeds.

Support real-time processing of these feeds to create new, derived feeds.
Support large data backlogs to handle periodic ingestion from offline
systems.

Support low-latency delivery to handle more traditional messaging use
cases.

Guarantee fault-tolerance in the presence of machine failures.



Kafka at LinkedIn (in 2014)

What type of data is being transported through Kafka?

» Metrics: operational telemetry data
» Tracking: everything a LinkedIn.com user does
» Queuing: between Linkedln apps, e.g. for sending emails

Used to transport data from LinkedIn’s apps to Hadoop, and back

» In total ~ 200 billion events/day via Kafka

» Tens of thousands of data producers, thousands of consumers

» 7 million events/sec (write), 35 million events/sec (read) <<< may
include replicated events

Multiple data centers, multiple clusters. Mirroring between clusters
/ data centers



Ride-Sharing Application

Goal: Incentivize particular types of behavior. E.g., Get driver/rider to
perform specific behavior by offering a reward.

When driver/rider accepts incentive, work is scheduled for later checking
to see if task has been fulfilled. If so, reward rider/driver.



Ride-Sharing Application

Goal: Incentivize particular types of behavior. E.g., Get driver/rider to
perform specific behavior by offering a reward.

When driver/rider accepts incentive, work is scheduled for later checking
to see if task has been fulfilled. If so, reward rider/driver.

Clearly a queue would be useful here!



Ride-Sharing Application

Goal: Incentivize particular types of behavior. E.g., Get driver/rider to
perform specific behavior by offering a reward.

When driver/rider accepts incentive, work is scheduled for later checking
to see if task has been fulfilled. If so, reward rider/driver.

Clearly a queue would be useful here!

Asynchronous work scheduling:

» Web request performs some work from a mobile client

» Some work needs to be durably scheduled for some other time —
logging, metrics, etc.

» Separate system reads from the queue and performs work items



Publish-Subscribe in Kafka

Basic ldea:
A model in which we provide middleware to glue requestors (producers)
to workers (consumers), with much looser coupling.



Publish-Subscribe in Kafka

Basic ldea:
A model in which we provide middleware to glue requestors (producers)
to workers (consumers), with much looser coupling.

On the Producer side:
Requests are made as published messages, on topics

On the Consumer side:
Workers monitor topics (subscribe) and then an idle worker can announce
that it has taken on some task, and later, finished it.



Publish-Subscribe in Kafka

Basic Idea:
A model in which we provide middleware to glue requestors to workers,

with much looser coupling.
s

Producer

msg



Apache Kafka Core Components

Kafka Core Components: Producers, Consumers, Brokers, and
Partitions

Kafka Cluster

Broker 1

-< Broker 2 \i

]

>

Broker 3 /




