
Publish-Subscribe

Principles of Functional Programming
Heather Miller

Heather Miller




Publish-Subscribe: Why?

Recall the Big Data Ecosystem Table…



Publish-Subscribe: Why?

Recall the Big Data Ecosystem Table…



Publish-Subscribe: Why?

Recall the Big Data Ecosystem Table…

There are many frameworks/tools/etc in this ecosystem that are often
used to implement separate microservices.



Publish-Subscribe: Why?

Recall the Big Data Ecosystem Table…

There are many frameworks/tools/etc in this ecosystem that are often
used to implement separate microservices.

However, microservices need to cooperate. For example, individual
microservices typically need to:

▶ take tasks from some sort of list
▶ perform the task
▶ announce completion



Introducing Kafka

Can be thought of as a distributed publish-subscribe messaging system.
Features:

▶ High Availability
▶ High Throughput
▶ Scalability
▶ Durability (message still received, even if queue is offline)



Introducing Kafka

Can be thought of as a distributed publish-subscribe messaging system.
Features:

▶ High Availability
▶ High Throughput
▶ Scalability
▶ Durability (message still received, even if queue is offline)

The main value Kafka provides to data pipelines is its ability to
serve as a very large, reliable buffer between various stages in the
pipeline, effectively decoupling producers and consumers of data
within the pipeline. This decoupling, combined with reliability,
security, and efficiency, makes Kafka a good fit for most data
pipelines.



Kafka Design Goals

Built at LinkedIn. Motivation:

“A unified platform for handling all the real-time data feeds a
large company might have.”

Must haves:

▶ High throughput to support high volume event feeds.
▶ Support real-time processing of these feeds to create new, derived feeds.
▶ Support large data backlogs to handle periodic ingestion from offline

systems.
▶ Support low-latency delivery to handle more traditional messaging use

cases.
▶ Guarantee fault-tolerance in the presence of machine failures.



Kafka at LinkedIn (in 2014)

What type of data is being transported through Kafka?

▶ Metrics: operational telemetry data
▶ Tracking: everything a LinkedIn.com user does
▶ Queuing: between LinkedIn apps, e.g. for sending emails

Used to transport data from LinkedIn’s apps to Hadoop, and back

▶ In total ~ 200 billion events/day via Kafka
▶ Tens of thousands of data producers, thousands of consumers
▶ 7 million events/sec (write), 35 million events/sec (read) <<< may

include replicated events

Multiple data centers, multiple clusters. Mirroring between clusters
/ data centers



Ride-Sharing Application

Goal: Incentivize particular types of behavior. E.g., Get driver/rider to
perform specific behavior by offering a reward.
When driver/rider accepts incentive, work is scheduled for later checking
to see if task has been fulfilled. If so, reward rider/driver.



Ride-Sharing Application

Goal: Incentivize particular types of behavior. E.g., Get driver/rider to
perform specific behavior by offering a reward.
When driver/rider accepts incentive, work is scheduled for later checking
to see if task has been fulfilled. If so, reward rider/driver.

Clearly a queue would be useful here!



Ride-Sharing Application

Goal: Incentivize particular types of behavior. E.g., Get driver/rider to
perform specific behavior by offering a reward.
When driver/rider accepts incentive, work is scheduled for later checking
to see if task has been fulfilled. If so, reward rider/driver.

Clearly a queue would be useful here!

Asynchronous work scheduling:

▶ Web request performs some work from a mobile client
▶ Some work needs to be durably scheduled for some other time –

logging, metrics, etc.
▶ Separate system reads from the queue and performs work items



Publish-Subscribe in Kafka

Basic Idea:
A model in which we provide middleware to glue requestors (producers)
to workers (consumers), with much looser coupling.



Publish-Subscribe in Kafka

Basic Idea:
A model in which we provide middleware to glue requestors (producers)
to workers (consumers), with much looser coupling.

On the Producer side:
Requests are made as published messages, on topics

On the Consumer side:
Workers monitor topics (subscribe) and then an idle worker can announce
that it has taken on some task, and later, finished it.



Publish-Subscribe in Kafka

Basic Idea:
A model in which we provide middleware to glue requestors to workers,
with much looser coupling.



Apache Kafka Core Components

Kafka Core Components: Producers, Consumers, Brokers, and
Partitions


