State and DStreams

Big Data Analysis with Scala and Spark
Heather Miller

State?

So far, we've approached Spark Streaming in the same way we have
approached regular Spark.

Assumption so far:
Functional transformations on immutable data.

State?

So far, we've approached Spark Streaming in the same way we have
approached regular Spark.

Assumption so far:
Functional transformations on immutable data.

However,

What if you need to the accumulate and aggregate the results from

the start of the streaming job?
Which means you need to check the previous state of the RDD in order to

do something with the current RDD.

State?

So far, we've approached Spark Streaming in the same way we have
approached regular Spark.

Assumption so far:
Functional transformations on immutable data.

However,

What if you need to the accumulate and aggregate the results from

the start of the streaming job?
Which means you need to check the previous state of the RDD in order to

do something with the current RDD.

To handle this, Spark supports:

Stateful Streams

A Stateful Streaming Example..

Let's say we want to find out when (timestamp) a user performed his or
her first and last activity in a given dataset in a stream.

Given incoming event with the following fields:

case class UserEvent(
user: String,
timestamp: java.sql.Timestamp,
activity: String)

updateStateByKey

Spark Streaming provides a method, updateStateByKey which manages this
state per key (assuming we have formed a key-value pair from our original
case class).

def updateStateByKey[S](updateFunc: (Seq[V], Option[S]) => Option[S])
updateStateByKey requires a function which accepts:

1. Seq[V] - The list of new values received for the given key in the
current batch
2. Option[S] - The state we're updating on every iteration.

Using updateStateByKey

In order to define a function updateFunc to pass to updateStateByKey, we
have to figure out two things.

Using updateStateByKey

In order to define a function updateFunc to pass to updateStateByKey, we
have to figure out two things.

1. Define the state. The state can be an arbitrary data type.

2. Define the state update function. Specify with a function how to
update the state using the previous state and the new values from an
input stream.

A Stateful Streaming Example..

Let's say we want to find out when (timestamp) a user performed his or
her first and last activity in a given dataset in a stream.

case class UserEvent(
user: String,
timestamp: java.sql.Timestamp,
activity: String)

What should our state look like?

A Stateful Streaming Example..

Let's say we want to find out when (timestamp) a user performed his or
her first and last activity in a given dataset in a stream.

case class UserEvent(
user: String,
timestamp: java.sql.Timestamp,
activity: String)

What should our state look like?

In order to figure out whether the event is the first or the last for a specific user, we
need to carry some state forward between batches of events. E.g.,

case class UserSession(
user: String,
var activity: String,
var start: java.sql.Timestamp,
var end: java.sql.Timestamp)

A Stateful Streaming Example... Continued.

We need to define an updateFunc which updates our state based on previous events that
we will pass to updateStateByKey. We can do this in a helper function:

def updateUserStateWithEvent(newEvents: Seq[UserEvent],
state: Option[UserSessionl]): Option[UserSession] = {
newEvents.map { input =>
//does the activity match for the given event
if (state.activity == input.activity) {
if (input.timestamp.after(state.end)) {
state.end = input.timestamp
}
if (input.timestamp.before(state.start)) {
state.start = input.timestamp

}
} else {
//some other activity
if (input.timestamp.after(state.end)) {
state.start = input.timestamp
state.end = input.timestamp
state.activity = input.activity
3}
>
//return the updated state
state

A Stateful Streaming Example... Continued.

Now, given a DStream called stream that processes elements of type
(String, UserEvent) where the String key represents UserEvent.user we

simply do:

stream.updateStateByKey(updateUserEvents)

Another Stateful Streaming Example

Let's say we want to maintain a running count of each word seen in a text
data stream.

Another Stateful Streaming Example

Let's say we want to maintain a running count of each word seen in a text
data stream.

This is a simpler case. Nonetheless, we need to define the following:

1. Define the state. The state can be an arbitrary data type.

2. Define the state update function. Specify with a function how to
update the state using the previous state and the new values from an
input stream.

Another Stateful Streaming Example

Let's say we want to maintain a running count of each word seen in a text
data stream.

Defining our state: Here, our state is the running count, and it is just an
integer.

Another Stateful Streaming Example

Let's say we want to maintain a running count of each word seen in a text
data stream.

Defining our state: Here, our state is the running count, and it is just an
integer.

Defining our update function:

def updateFunction(newValues: Seq[Int],
runningCount: Option[Int]): Option[Int] = {

val newCount = ... // add the new values with the previous
// running count to get the new count
Some (newCount)

Another Stateful Streaming Example

Let's say we want to maintain a running count of each word seen in a text
data stream.

We can now compute the running count of each word as follows:
val runningCounts = pairs.updateStateByKey[Int](updateFunction _)

This is applied on a DStream containing words, e.g., (word, 1) pairs.

The update function will be called for each word, with newvalues having a
sequence of 1's (from the (word, 1) pairs) and the runningCount having
the previous count.

Problems with updateStateByKey

Caveats of updateStateByKey:

Performance

For each new incoming batch, the transformation iterates the entire state
store, regardless of whether a new value for a given key has been consumed or
not.

This can effect performance especially when dealing with a large amount of state
over time.

No built-in timeouts
What would happen in our example if the event signaling the end of the user
session was lost, or hadn't arrived for some reason?

One upside to the fact updateStateByKey iterates all keys is that we can
implement such a timeout ourselves, but this should definitely be a feature of the
framework.

Introducing mapWithState

mapWithState is an alternative to updateStateByKeys. mapWithState comes
with features we've been missing from updateStateByKey:

Introducing mapWithState

mapWithState is an alternative to updateStateByKeys. mapWithState comes
with features we've been missing from updateStateByKey:

1. Built in timeout mechanism. We can tell mapWithState the period we'd
like to hold our state for in case new data doesn't come. Once that timeout
is hit, mapwithState will be invoked one last time with a special flag (which
we'll see shortly).

2. Partial updates. Only keys which have new data arrived in the current
batch will be iterated. This means no longer needing to iterate the entire
state store at every batch interval, which is a great performance
optimization.

3. Choose your return type. We can now choose a return type of our desire,
regardless of what type our state object holds.

4. Initial state. We can select a custom RDD to initialize our stateful
transformation on startup.

Introducing mapWithState

mapWithState is an alternative to updateStateByKeys.

def mapWithState[StateType, MappedType]
(spec: StateSpec[K, V, StateType, MappedType]): DStream[MappedType]

Introducing mapWithState

mapWithState is an alternative to updateStateByKeys.

def mapWithState[StateType, MappedType]
(spec: StateSpec[K, V, StateType, MappedType]): DStream[MappedType]

What is this StateSpec thing?

Introducing mapWithState

mapWithState is an alternative to updateStateByKeys.

def mapWithState[StateType, MappedType]
(spec: StateSpec[K, V, StateType, MappedType]): DStream[MappedType]

What is this StateSpec thing?

You put all of the things into StateSpec that you need for updating the state.

The update function.

An initial state as an RDD.

Number of partitions.

Partitioner.

Timeout. This will ensure that keys whose values are not updated for a
specific period of time will be removed from the state.

vyvyVvyyvyy

Streaming word count with mapWithState

Let's start with implementing the function for updating the state in our
streaming word count example.

Streaming word count with mapWithState

Let's start with implementing the function for updating the state in our
streaming word count example.

Shape of our update function:

The update function is called on a paired (key-value) DStream. The
update function is called for every element in the paired DStream. The
function takes the following input parameters:

The current Batch Time

The key for which the state needs to be updated
The value observed at the ‘Batch Time' for the key.
The current state for the key.

vV vVvYyysy

The function should return the new (key, value) pair where value has the
updated state information

Streaming word count with mapWithState

Let's start with implementing the function for updating the state in our
streaming word count example.

// In this example:

// - key is the word.

// - value is ’1’. Its type is ’'Int’.

// - state has the running count of the word. It’s type is Long.

// - return value is the new (key, value) pair where value is the updated count.

def trackStateFunc(batch: Time, key: String, value: Option[Int], state: State[Longl):
Option[(String, Long)] = {
val sum = value.getOrElse(@).tolLong + state.getOption.getOrElse(0L)
val output = (key, sum)
state.update(sum)
Some (output)

mapWithState's State Specification

Now that we have an update function, we can define our state
specification.

Remember, we can also set the following in the creation of our state
specification:

» An initial state as an RDD.
» Number of partitions.

» Partitioner.
» Timeout.

mapWithState's State Specification

Now that we have an update function, we can define our state
specification.

val initialRDD = sc.parallelize(List((”dummy”, 100L), (”source”, 32L)))
val stateSpec = StateSpec.function(trackStateFunc)
.initialState(initialRDD)
.numPartitions(2)
.timeout (Seconds(60))

mapWithState's State Specification

Now that we have an update function, we can define our state
specification.

val initialRDD = sc.parallelize(List((”dummy”, 100L), (”source”, 32L)))
val stateSpec = StateSpec.function(trackStateFunc)
.initialState(initialRDD)
.numPartitions(2)
.timeout (Seconds(60))

val wordCountStateStream = wordStream.mapWithState(stateSpec)
wordCountStateStream.print()

mapWithState vs updateStateByKey

mapWithState has been been shown to provide can provide 6X lower

latency.
1 .
Operation
09 B updateStateByKey [old]
,g. 0.8 B mapWithState [new]
© 07
g
S 06
2
S 0.5
0.4
0.3
0.2
0.1
0
0.25 0.5 0.75 1

1't keys in state (millions)

Up to 8X lower batch processing times (i.e.latency) with mapWithState than
updateStateByKey

mapWithState vs updateStateByKey

Faster processing allows mapWithState to manage 10X more keys compared
with updateStateByKey (with the same batch interval, cluster size, update
rate in both cases).

g

Operation

B updateStateByKey [old]
B mapWithState [new]

3

keys in state (millions)

o = N W & 0 O N ® O

Up to 10X more keys in state with mapWithState than updateStateByKey

But what if our job fails?

What happens to the state that Spark is maintaining between batches if a
node crashes?

Wasn't it functional transformations on immutable data that made
Spark able to be fault-tolerant? What now, with all of this state?

But what if our job fails?

What happens to the state that Spark is maintaining between batches if a
node crashes?

Wasn't it functional transformations on immutable data that made
Spark able to be fault-tolerant? What now, with all of this state?

To keep fault-tolerance and still enable stateful streaming, Spark supports

Checkpointing

Checkpointing

A streaming application must operate 24 /7 and hence must be resilient to
failures unrelated to the application logic (e.g., system failures, JVM
crashes, etc.)

For this to be possible, Spark Streaming needs to checkpoint enough
information to a fault-tolerant storage system such that it can recover
from failures.

Checkpointing

A streaming application must operate 24 /7 and hence must be resilient to
failures unrelated to the application logic (e.g., system failures, JVM
crashes, etc.)

For this to be possible, Spark Streaming needs to checkpoint enough
information to a fault-tolerant storage system such that it can recover
from failures.

There are two types of data that are checkpointed.

Checkpointing

There are two types of data that are checkpointed.

1. Metadata checkpointing. Saving of the information defining the
streaming computation to fault-tolerant storage like HDFS. This is
used to recover from failure of the node running the driver of the
streaming application. Meta-data includes:

» Configuration. The configuration that was used to create the
streaming application.

» DStream operations. The set of DStream operations that define the
streaming application.

» Incomplete batches. Batches whose jobs are queued but have not
completed yet.

Checkpointing

There are two types of data that are checkpointed.

2. Data checkpointing. Saving of the generated RDDs to reliable
storage. This is necessary in some stateful transformations that
combine data across multiple batches. In such transformations, the
generated RDDs depend on RDDs of previous batches, which causes
the length of the dependency chain to keep increasing with time. To
avoid such unbounded increases in recovery time (proportional to
dependency chain), intermediate RDDs of stateful transformations
are periodically checkpointed to reliable storage (e.g. HDFS) to cut
off the dependency chains.

Checkpointing

In sum:

» Metadata checkpointing is primarily needed for recovery from
driver failures, whereas

» Data or RDD checkpointing is necessary even for basic functioning
if stateful transformations are used.

