Windowing

PARTNER PRACTICE
ENABLEMENT
BOOTCAMP



Windowing in Spark

Spark provides a set of transformations that apply to a sliding window of data.

A window is defined by two parameters: window length and slide interval.

First 8 sec. window Second 8 sec. window
v

Window operation Window operation is
is performed here. performed here,
4 seconds after the
previous one.

“Tumbling window” effect can be achieved by making slide interval = window length




Spark: Window transformation operations

Window Returns a new DStream that is computed based on windowed batches of the source DStream.
(windowLength, slideInterval)

countByWindow (windowlLength, Returns a sliding window count of elements in the stream.

slideInterval)

f‘edUCGBywindOW Returns a new single-element stream, created by aggregating elements in the stream over a sliding interval
(func, windowLength, using func. The function should be associative so that it can be computed correctly in parallel.
slideInterval)

reduceByKeyAndWindow (func, When called on, a DStream of (K, V) pairs returns a new DStream of (K, V) pairs, where the values for each key
windowLength, slideInterval, are aggregated using the given reduce function (func) over batches in a sliding window.

[numTasks])

reduceByKeyAndWindow A more efficient version of the above reduceByKeyAndWindow(), where the reduce value of each window is

(func, 1invFunc,
windowlLength,
slideInterval, [numTasks])

calculated incrementally, using the reduce values of the previous window. This is done by reducing the new data
that enters the sliding window, and "inverse reducing" the old data that leaves the window. An example would
be that of "adding" and "subtracting" counts of keys as the window slides. Howeuver, it is applicable to only
"invertible reduce functions” —that is, those reduce functions that have a corresponding "inverse reduce"
function (taken as parameter invFunc).

countByValueAndWindow When called on, a DStream of (K, V) pairs returns a new DStream of (K, Long) pairs where the value of each key

(windowLength, slidelInterval, is its frequency within a sliding window.
[numTasks])



Windowing sample code
Count hashtags in a Twitter stream over the last 10 mins., and update every 2 secs.

val tweets = ssc.twitterStream<Twitter username>, <Twitter password>)

val hashTags = tweets.flatMap (status => getTags(status))

val tagCounts = hashTags.window(Minutes(10), Second(2)) countByValue()

Window operation Window length Sliding interval Callback operation

countByValue() is invoked every 2 secs. All RDDs batch @ t batch @ t+1 batch @ t+2
accumulated in the previous 10 minutes are passed tweets
to the callback function.

hashTags

map
FeraT T

el

reduceByKey reduceByKey

tagCounts
[(#cat, 10), (#dog, 25), ...




