
Using foreachRDD

Big Data Analysis with Scala and Spark
Heather Miller



Using foreachRDD

foreachRDD is an important and flexible primitive that allows data to be
sent out to external systems.



Using foreachRDD

foreachRDD is an important and flexible primitive that allows data to be
sent out to external systems.

dstream.foreachRDD { rdd =>
val connection = createNewConnection() // executed at the driver

rdd.foreach { record =>
connection.send(record) // executed at the worker

}

}

What’s wrong with this code?



Using foreachRDD

foreachRDD is an important and flexible primitive that allows data to be
sent out to external systems.

dstream.foreachRDD { rdd =>
val connection = createNewConnection() // executed at the driver

rdd.foreach { record =>
connection.send(record) // executed at the worker

}

}

What’s wrong with this code?

This is incorrect as this requires the connection object to be serialized and
sent from the driver to the worker. Such connection objects are rarely
transferable across machines.



Using foreachRDD

dstream.foreachRDD { rdd =>
rdd.foreach { record =>

val connection = createNewConnection()

connection.send(record)

connection.close()

}

}

What’s wrong with this code?



Using foreachRDD

dstream.foreachRDD { rdd =>
rdd.foreach { record =>

val connection = createNewConnection()

connection.send(record)

connection.close()

}

}

What’s wrong with this code?
Typically, creating a connection object has time and resource overheads. Therefore, creating
and destroying a connection object for each record can incur unnecessarily high overheads and
can significantly reduce the overall throughput of the system.

A better solution is to use rdd.foreachPartition - create a single connection object and send all
the records in a RDD partition using that connection.



Using foreachRDD

dstream.foreachRDD { rdd =>
rdd.foreachPartition { partitionOfRecords =>

val connection = createNewConnection()

partitionOfRecords.foreach(record => connection.send(record))

connection.close()

}

}

This amortizes the connection creation overheads over many records.
Finally, this can be further optimized by reusing connection objects across
multiple RDDs/batches.



Using foreachRDD

Note that the connections in the pool should be lazily created on demand
and timed out if not used for a while. This achieves the most efficient
sending of data to external systems.

dstream.foreachRDD { rdd =>
rdd.foreachPartition { partitionOfRecords =>

// ConnectionPool is a static, lazily initialized pool of connections

val connection = ConnectionPool.getConnection()

partitionOfRecords.foreach(record => connection.send(record))

ConnectionPool.returnConnection(connection) // return to the pool for future reuse

}

}


