
Spark Streaming

Big Data Analysis with Scala and Spark
Heather Miller

Where Spark Streaming fits in (1)

Spark is focused on batching

Processing large, already-collected batches of data.

For example:

Where Spark Streaming fits in (1)

Spark is focused on batching

Processing large, already-collected batches of data.

Example batch jobs include:

▶ analysis on terabytes of logs collected over a long period of time
stored in S3 buckets

▶ analysis of code bases on GitHub, or on other large repositories of
textual information such as Wikipedia

▶ nightly analysis on large data sets (images, text) collected over a 24
hour period

Where Spark Streaming fits in (2)

Spark Streaming is about streaming

Processing every value coming from a stream of data. That is, data values
are constantly arriving.

For example:

Where Spark Streaming fits in (2)

Spark Streaming is about streaming

Processing every value coming from a stream of data. That is, data values
are constantly arriving.

Example streaming jobs include:

▶ real-time decision making, e.g., a bank that wants to automatically
verify whether a new transaction on a customer’s credit card
represents fraud based on their recent history, and deny the
transaction if the charge is determined fraudulent. (Stateful!)

▶ online machine learning, train a model on a combination of
streaming and historical data from multiple users. E.g., fraud
detection which continuously updates a model from all customers’
behavior and tests each transaction against it.

At odds with each other?

Looking at these two drawings, you may ask yourself…
Wait, how is it possible for me to put the streaming illustration into Spark?

At odds with each other?

Looking at these two drawings, you may ask yourself…
Wait, how is it possible for me to put the streaming illustration into Spark?

Everything that we’ve learned about optimizing operations on
non-streaming Spark datasets have been based on the assumption
that our data is fixed.
E.g., we assume we can stage up computation on a dataset that we might
know a lot about, such as schema information in the case of DataFrames.

Microbatching

Spark supports streaming via microbatching.

Micro-batch systems wait to accumulate small batches of input data (say,
500 ms’ worth), then process each batch in parallel using a distributed
collection of tasks, similar to the execution of a batch job in Spark.

For example:

DStreams

Spark Streaming provides a high-level abstraction called discretized stream
or DStream, which represents a continuous stream of data.
Internally, a DStream is represented as a sequence of RDDs.

DStreams

Spark Streaming provides a high-level abstraction called discretized stream
or DStream, which represents a continuous stream of data.
Internally, a DStream is represented as a sequence of RDDs.
Another way to visualize it:

What do DStreams Look Like?

Let’s say we want to count the number of words in text data received from
a data server listening on a TCP socket.

What do DStreams Look Like?

Let’s say we want to count the number of words in text data received from
a data server listening on a TCP socket.
First we create a StreamingContext…

import org.apache.spark._

import org.apache.spark.streaming._

// Create a local StreamingContext with two working threads and batch

// interval of 1 second.

val conf = new SparkConf().setMaster(”local[2]”)

.setAppName(”NetworkWordCount”)

val ssc = new StreamingContext(conf, Seconds(1))

What do DStreams Look Like?

Using this context, we can create a DStream that represents streaming
data from a TCP source, specified as hostname (e.g. localhost) and port
(e.g. 9999).

// Create a DStream that will connect to hostname:port, like localhost:9999

val lines = ssc.socketTextStream(”localhost”, 9999)

What do DStreams Look Like?

The lines DStream represents the stream of data that will be received
from the data server. Each record in this DStream is a line of text. Next,
we want to split the lines by space characters into words.

// Create a DStream that will connect to hostname:port, like localhost:9999

val lines = ssc.socketTextStream(”localhost”, 9999)

// Split each line into words

val words = lines.flatMap(_.split(” ”))

flatMap is a one-to-many DStream operation that creates a new DStream
by generating multiple new records from each record in the source
DStream.
__

What do DStreams Look Like?

Next, we want to count these words.

// Count each word in each batch

val pairs = words.map(word => (word, 1))

val wordCounts = pairs.reduceByKey(_ + _)

// Print the first ten elements of each RDD generated in

// this DStream to the console

wordCounts.print()

The words DStream is further mapped (one-to-one transformation) to a
DStream of (word, 1) pairs, which is then reduced to get the frequency of
words in each batch of data. Finally, wordCounts.print() will print a few of
the counts generated every second. __

What do DStreams Look Like?

What happens now?

What do DStreams Look Like?

What happens now?

Nothing.

Spark Streaming only sets up the computation it will perform when it is
started, and no real processing has started yet.
We still have to kick off computation:

ssc.start() // Start the computation

ssc.awaitTermination() // Wait for the computation to terminate

What do DStreams Look Like?

TERMINAL 1:

Running Netcat

$ nc -lk 9999

hello world

TERMINAL 2: RUNNING NetworkWordCount

$./bin/run-example streaming.NetworkWordCount localhost 9999

...

Time: 1357008430000 ms

(hello,1)

(world,1)

...

What do DStreams Look Like?

Visualizing part of the previous computation:

Any operation applied on a DStream translates to operations on the underlying RDDs.
For example, in the earlier example of converting a stream of lines to words, the flatMap
operation is applied on each RDD in the lines DStream to generate the RDDs of the
words DStream.

Creating the StreamingContext

In general, a StreamingContext object can be created from an existing
SparkContext object.

import org.apache.spark.streaming._

val sc = ... // existing SparkContext

val ssc = new StreamingContext(sc, Seconds(1))

The second parameter, Seconds(1) represents the time interval at which
streaming data will be divided into batches.

Using the StreamingContext

After a StreamingContext is defined, the general workflow is the following:

1. Define the input sources by creating input DStreams.
2. Define the streaming computations by applying transformation and

output operations to DStreams.
3. Start receiving data and processing it using

streamingContext.start().
4. Wait for the processing to be stopped (manually or due to any error)

using streamingContext.awaitTermination().
5. The processing can be manually stopped using

streamingContext.stop().

Using the StreamingContext (Important Points)

Important points to remember about StreamingContexts

1. Once a context has been started, no new streaming computations can
be set up or added to it.

2. Once a context has been stopped, it cannot be restarted.
3. Only one StreamingContext can be active in a JVM at the same time.
4. stop() on StreamingContext also stops the SparkContext. To stop

only the StreamingContext, set the optional parameter of stop()

called stopSparkContext to false.
5. A SparkContext can be re-used to create multiple StreamingContext,

as long as the previous StreamingContext is stopped (without stopping
the SparkContext) before the next StreamingContext is created.

Kinds of Operations on DStreams

Rather than organizing operations on DStreams around transformations
and actions, DStream operations are broken into the following categories:

1. Ingestion
2. Transformation
3. Output

Kinds of Operations on DStreams

Rather than organizing operations on DStreams around transformations
and actions, DStream operations are broken into the following categories:

1. Ingestion
2. Transformation
3. Output

Note: transformations on DStreams are still lazy! Now instead,
computation is kicked off explicitly by a call to the start() method on the
StreamingContext

Ingestion: Getting Data Into DStreams

Every input DStream is associated with a Receiver object which receives
the data from a source and stores it in Spark’s memory for processing.

Spark Streaming provides three categories of streaming sources.

1. Basic sources (built-in): Sources directly available in the
StreamingContext API. Examples: file systems, and socket
connections.

2. Advanced sources (built-in): Sources like Kafka, Flume, Kinesis,
etc. are available through extra utility classes.

3. Custom sources (user-provided): Input DStreams can also be
created out of custom data sources. To do so, you must implement a
your own Receiver (apache.spark.streaming.receiver.Receiver).

Basic Sources

The simplest sort of basic source available in Spark Streaming are file
streams.
For reading data from files on any file system compatible with the HDFS
API (that is, HDFS, S3, NFS, etc.), a DStream can be created as via
StreamingContext.fileStream[KeyClass, ValueClass, InputFormatClass].
For simple text files, the easiest method is:

StreamingContext.textFileStream(dataDirectory)

Advanced Sources

Connectors have long been available for several popular message
queues/pub-sub frameworks:

▶ Twitter
▶ Kafka
▶ Flume
▶ Kinesis

Usually: require external library.
Recently: Spark 2.3.0 shipped with methods in the Python API to read in
data from Kafka, Kinesis and Flume.

Custom Sources

To create your own custom source, you must extend the abstract Receiver

class, and implement two methods:

▶ onStart(): Things to do to start receiving data.
▶ onStop(): Things to do to stop receiving data.

Custom Sources

To create your own custom source, you must extend the abstract Receiver

class, and implement two methods:

class CustomReceiver(host: String, port: Int)
extends Receiver[String](StorageLevel.MEMORY_AND_DISK_2) with Logging {

def onStart() {

// Start the thread that receives data over a connection

new Thread(”Socket Receiver”) {

override def run() { receive() }

}.start()

}

def onStop() {

// There is nothing much to do as the thread calling receive()

// is designed to stop by itself if isStopped() returns false

}

}

Creating DStreams

Ways to create a DStream:

Creating DStreams

Ways to create a DStream:

1. Ingest: input data streams from sources such as Kafka, Flume, and
Kinesis,

2. Other DStreams: or by applying high-level operations on other
DStreams.

DStream Transformations (1)

DStreams support many of the transformations available on normal Spark
RDDs.

DStream Transformations (2)

DStreams support many of the transformations available on normal Spark
RDDs.

Outputting Results

Output operations allow DStream’s data to be pushed out to external systems like a database or
a file systems. Since the output operations actually allow the transformed data to be consumed
by external systems, they trigger the actual execution of all the DStream transformations
(similar to actions for RDDs).

