A

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Datasets

Big Data Analysis with Scala and Spark
Heather Miller

Example

Let’s say we've just done the following computation on a DataFrame
representing a data set of Listings of homes for sale; we've computed the

average price of for sale per zipcode.

case class Listing(street: String, zip: Int, price: Int)
val listingsDF = ... // DataFrame of Listings

import org.apache.spark.sql.functions._

val averagePricesDF = listingsDF.groupBy($”zip”)
.avg(Pprice”)

Example

Let’s say we've just done the following computation on a DataFrame
representing a data set of Listings of homes for sale; we've computed the

average price of for sale per zipcode.

case class Listing(street: String, zip: Int, price: Int)
val listingsDF = ... // DataFrame of Listings

import org.apache.spark.sql.functions._

val averagePricesDF = listingsDF.groupBy($”zip”)
.avg(Pprice”)

Great. Now let's call collect() on averagePricesDF to bring it back to the

master node..

Example

val averagePrices = averagePricesDF.collect()
// averagePrices: Arraylorg.apache.spark.sqgl.Row]

Oh no. What is this? What's in this Row thing again?

Example

val averagePrices = averagePricesDF.collect()
// averagePrices: Arraylorg.apache.spark.sqgl.Row]

Oh no. What is this? What's in this Row thing again?

Oh right, | have to cast things because Rows don’'t have type information
associated with them. How many columns were my result again? And
what were their types?

val averagePricesAgain = averagePrices.map {
row => (row(@).asInstanceOf[String], row(1).asInstanceOf[Int])

Example

val averagePrices = averagePricesDF.collect()
// averagePrices: Arraylorg.apache.spark.sql.Row]

Oh no. What is this? What's in this Row thing again?

Oh right, | have to cast things because Rows don’'t have type information
associated with them. How many columns were my result again? And
what were their types?

val averagePricesAgain = averagePrices.map {
row => (row(0@).asInstanceOf[Stringl, row(1).asInstanceOf[Int])

Nope.
// java.lang.ClassCastException

Example

Let's try to see what's in this Row thing. (Consults Row APl docs.)

averagePrices.head.schema.printTreeString()
// root

// |-- zip: integer (nullable = true)

// |-- avg(price): double (nullable = true)

Example

Let's try to see what's in this Row thing. (Consults Row APl docs.)

averagePrices.head.schema.printTreeString()

// root

// |-- zip: integer (nullable = true)

// |-- avg(price): double (nullable = true)
Trying again...

val averagePricesAgain = averagePrices.map {
row => (row(Q).asInstanceOf[Int], row(1).asInstanceOf[Double]) // Ew. ..

)
// mostExpensiveAgain: Array[(Int, Double)]

yay! &

Example

Let's try to see what's in this Row thing. (Consults Row APl docs.)

averagePrices.head.schema.printTreeString()

// root

// |-- zip: integer (nullable = true)

// |-- avg(price): double (nullable = true)

. . pre
Trying again.. prece

val averagePricesAgain = averagePrices.map {
row => (row(@).asInstanceOf[Int], row(1).asInstanceOf[Double]) // Ew. ..

}
// mostExpensiveAgain: Array[(Int, Double)]

yay! B

Wouldn't it be nice if we could have both Spark SQL optimizations and
typesafety?

Datasets

Enter Datasets.

Confession

I've been keeping something from you..

DataFrames are Datasets!

DataFrames are actually Datasets.

type DataFrame = Dataset[Row]
/_— 1\

DataFrames are Datasets!

DataFrames are actually Datasets.

type DataFrame = Dataset[Row]

> \What the heck is a Dataset?

DataFrames are Datasets!

DataFrames are actually Datasets.

type DataFrame = Dataset[Row]

~+ What the heck is a Dataset?

> Datasets can be thought of as typed distributed collections of data.

» Dataset API unifies the DataFrame and RDD APls. Mix and match! %

> Datasets require strucutred/semi-structured data. Schemas and
Encoders core part of Datasets.

Think of Datasets as a compromise between RDDs & DataFrames.
You get more type information on Datasets than on DataFrames, and you
get more optimizations on Datasets than you get on RDDs.

DataFrames are Datasets!

Example:

Let's calculate the average home price per zipcode with Datasets.
Assuming listingsDS is of type Dataset[Listing]:

g
listingsDS.groupByKey(l => 1.zip) // looks like groupByKey on RDDs!

.agg(avg($’price”) .as[Double]) // looks like our DataFrame operators!

We can freely mix APIs!

Datasets

Datasets are a something in the middle between DataFrames and RDDs

> You can still use relational DataFrame operations as we learned in previous
sessions on Datasets.

> Datasets add more typed operations that can be used as well.
> Datasets let you use higher-order functions like map, flatMap, filter again!

Datasets

Datasets are a something in the middle between DataFrames and RDDs

> You can still use relational DataFrame operations as we learned in previous
sessions on Datasets.

> Datasets add more typed operations that can be used as well.
> Datasets let you use higher-order functions like map, flatMap, filter again!

Datasets can be used when you want a mix of functional and relational
transformations while benefiting from some of the optimizations on DataFrames.

And we've almost got a type safe API as well.

Creating Datasets

From a DataFrame.
Just use the toDS convenience method.

myDF.toDS // requires import spark.implicits._

Note that often it's desirable to read in data from JSON from a file, which can be done
with the read method on the SparkSession object like we saw in previous sessions, and
then converted to a Dataset:

val myDS = spark.read. json(”people.json”).as[Person]

Creating Datasets

From a DataFrame.
Just use the toDS convenience method.

myDF.toDS // requires import spark.implicits._

Note that often it's desirable to read in data from JSON from a file, which can be done
with the read method on the SparkSession object like we saw in previous sessions, and

then converted to a Dataset:

val myDS = spark.read.json(”people.json”).as[Person]

From an RDD.
Just use the toDS convenience method.

myRDD.toDS // requires import spark.implicits._

Creating Datasets

From a DataFrame.
Just use the toDS convenience method.

myDF.toDS // requires import spark.implicits._

Note that often it's desirable to read in data from JSON from a file, which can be done
with the read method on the SparkSession object like we saw in previous sessions, and
then converted to a Dataset:

val myDS = spark.read. json(”people. json”).as[Person]

From an RDD.
Just use the toDS convenience method.

myRDD.toDS // requires import spark.implicits._

From common Scala types.
Just use the toDS convenience method.

List(”yay”, ”ohnoes”, "”hooray!”).toDS // requires import spark.implicits._

Typed Columns

Recall the Column type from DataFrames. On Datasets, typed operations
tend to act on TypedColumn instead.

<console>:58: error: type mismatch;
found : org.apache.spark.sql.Column
required: org.apache.spark.sql.TypedColumn[...]
.agg(avg($’price”)).show

A

Typed Columns

Recall the Column type from DataFrames. On Datasets, typed operations
tend to act on TypedColumn instead.

<console>:58: error: type mismatch;
found : org.apache.spark.sql.Column
required: org.apache.spark.sql.TypedColumn[...]
.agg(avg($’price”)).show

A

To create a TypedColumn, all you have to do is call as[...] on your
(untyped) Column.

$”price”.as[Double] // this now represents a TypedColumn.

—————

Transformations on Datasets

Remember untyped transformations from DataFrames?

—_— ————

Transformations on Datasets

Remember untyped transformations from DataFrames?

The Dataset API includes both untyped and typed transformations.

» untyped transformations the transformations we learned on DataFrames.

> typed transformations typed variants of many DataFrame transformations
additional transformations such as RDD-like higher-order functions map, flatMap,

etc.

Transformations on Datasets

Remember untyped transformations from DataFrames?

The Dataset API includes both untyped and typed transformations.

> untyped transformations the transformations we learned on DataFrames.

> typed transformations typed variants of many DataFrame transformations +
additional transformations such as RDD-like higher-order functions map, flatMap,
etc.

These APIs are integrated. You can call a map on a DataFrame and get back a Dataset,
for example.

Caveat: not every operation you know from RDDs are available on Datasets, and not all

operations look 100% the same on Datasets as they did on RDDs.

But remember, you may have to explicitly provide type information when going
from a DataFrame to a Dataset via typed transformations.

val keyValuesDF = List((3,”Me”),(1,”Th1”),(2,”Se”),(3,”ssa”),(3,”7-)"),(2,”cre”),(2,”t”)).toDF
val res = keyValuesDF.map(row => row(@).asInstanceOf[Int] + 1) // Ew...

Common (Typed) Transformations on Datasets

S —

map map[U]J(f: T => U): Dataset[U]
Apply function to each element in the Dataset and return a
Dataset of the result.

flatMap flatMap[UJ(f: T => TraversableOnce[U]): Dataset[U]
Apply a function to each element in the Dataset and return a
Dataset of the contents of the iterators returned.

filter filter(pred: T => Boolean): Dataset[T]
Apply predicate function to each element in the Dataset
and return a Dataset of elements that have passed the predicate
condition, pred.

distinct distinct(): Dataset[T]
Return Dataset with duplicates removed.

Common (Typed) Transformations on Datasets

groupByKey

coalesce

repartition

groupByKey[K](f: T => K):

KeyValueGroupedDataset[K, T]

Apply function to each element in the Dataset and return a
Dataset of the result.

coalesce(numPartitions: Int): Dataset[T]
Apply a function to each element in the Dataset and return
a Dataset of the contents of the iterators returned.

repartition(numPartitions: Int): Dataset[T]

Apply predicate function to each element in the Dataset
and return a Dataset of elements that have passed the predicate
condition, pred.

Grouped Operations on Datasets

Like on DataFrames, Datasets have a special set of aggregation operations
meant to be used after a call to groupByKey on a Dataset.

» calling groupByKey on a Dataset returns a KeyValueGroupedDataset

> KeyValueGroupedDatasetcontains a number of aggregation operations
which return Datasets

Grouped Operations on Datasets

Like on DataFrames, Datasets have a special set of aggregation operations
meant to be used after a call to groupByKey on a Dataset.

» calling groupByKey on a Dataset returns a KeyValueGroupedDataset

> KeyValueGroupedDatasetcontains a number of aggregation operations
which return Datasets

How to group & aggregate on Datasets?

1. Call groupByKey on a Dataset, get back a KeyValueGroupedDataset.

2. Use an aggregation operation on KeyValueGroupedDataset (return
Datasets)

Note: using groupBy on a Dataset, you will get back a RelationalGroupedDataset whose
aggregation operators will return a DataFrame. T herefore, be careful to avoid groupBy if you
would like to stay in the Dataset API.

Some KeyValueGroupedDataset Aggregation Operations

reduceGroups

agg

reduceGroups(f: (V, V) => V): Dataset[(K, V)]
Reduces the elements of each group of data using the spec-
ified binary function. The given function must be commutative
and associative or the result may be non-deterministic.

agglUl(col: TypedColumn[V, U]l): Dataset[(K, U)]
Computes the given aggregation, returning a Dataset of tuples for
each unique key and the result of computing this aggregation over
all elements in the group.

Using the General agg Operation

Just like on DataFrames, there exists a general aggregation operation agg defined
on KeyValueGroupedDataset.

agg[U](col: TypedColumn[V, U]): Dataset[(K, U)]

The only thing a bit peculiar about this operation is its argument. What
do we pass to it?

Using the General agg Operation

Just like on DataFrames, there exists a general aggregation operation agg defined
on KeyValueGroupedDataset.

agglU](col: TypedColumn[V, U]): Dataset[(K, U)]

The only thing a bit peculiar about this operation is its argument. What
do we pass to it?

Typically, we simply select one of these operations from function, such as avg,

e ——

choose a column for avg to be computed on, and we pass it to agg.

someDS.agg(avg($”’column’))
==

Using the General agg Operation

Just like on DataFrames, there exists a general aggregation operation agg defined
on KeyValueGroupedDataset.

agg[U](col: TypedColumn[V, U]): Dataset[(K, U)]

Typically, we simply select one of these operations from function, such as avg,
choose a column for avg to be computed on, and we pass it to agg.

someDS.agg(avg($”’column”))

// L[error] found . org.apache.spark.sqgl.Column

// Lerror] required: org.apache.spark.sql.TypedColumn[Listing, ?]
// Lerror._ .agg(avg($”’column”))

// Lerror._ A

// Lerror] one error found

Oops. TypedColumn! Remember that we have to use as[...] to convert our
untyped regular Column into a TypedColumn.

Using the General agg Operation

Just like on DataFrames, there exists a general aggregation operation agg defined
on KeyValueGroupedDataset.

agglU](col: TypedColumn[V, U]): Dataset[(K, U)]

Typically, we simply select one of these operations from function, such as avg,
choose a column for avg to be computed on, and we pass it to agg.

someDS.agg(avg($”column”)).as[Double])

All better now.

Some KeyValueGroupedDataset (Aggregation) Operations

mapGroups mapGroups[U](f: (K, Iterator[V]) => U): Dataset[U]
Applies the given function to each group of data. For each unique
group, the function will be passed the group key and an iterator
that contains all of the elements in the group. The function can
return an element of arbitrary type which will be returned as a
new Dataset.

flatMapGroups flatMapGroups[U](f: (K, Iterator[V])
=> TraversableOnce[U]): Dataset[U]
Applies the given function to each group of data. For each
unique group, the function will be passed the group key and
an iterator that contains all of the elements in the group. The
function can return an iterator containing elements of an arbitrary
type which will be returned as a new Dataset.

Note: at the time of writing, KeyValueGroupedDataset is marked as ©Experimental and ©@Evolving.
Therefore, expect this API to fluctuate—it’s likely that new aggregation operations will be added
and others could be changed.

reduceByKey?

If you glance around the Dataset API docs, you might notice that Datasets are
missing an important transformation that we often used on RDDs: reduceByKey.

reduceByKey?

If you glance around the Dataset API docs, you might notice that Datasets are
missing an important transformation that we often used on RDDs: reduceByKey.

Challenge:
Emulate the semantics of reduceByKey on a Dataset using Dataset operations
presented so far. Assume we'd have the following data set:

val keyValues =
List((3,”Me”),(1,”Thi”),(2,”Se”), (3,”ssa”),(1,”sIsA”),(3,7ge:"),(3,7-)7),(2,7cre”),(2,7t”))

Find a way to use Datasets to achieve the same result that you would get if you
put this data into an RDD and called:

keyValuesRDD. reduceByKey(_+_)

a———

Try it on your own now!

Note: the objective is just to use the APIs presented so far, don’t worry about performance for
now.

reduceByKey?

Challenge:
Emulate the semantics of reduceByKey on a Dataset using Dataset operations

presented so far. Assume we'd have the following data set: Dm{"\“*'[(lﬁ’ 5’\'(‘&3}1

val keyValues =
List((3,”Me”),(1,”Thi”), (2,”Se”),(3,”ssa”),(1,”sIsA”),(3,7ge:”),(3,7-)"),(2,7cre”),(2,7t”))

— t—

val keyValuesDS = keyValues. toDS

keyValuesDS. groupByKey(p => p._1)
.mapGroups((k, vs) => (k, vs.foldLeft(””)((acc, p) => acc + p._2)))

reduceByKey?

Challenge:
Emulate the semantics of reduceByKey on a Dataset using Dataset operations
presented so far. Assume we'd have the following data set:

val keyValues =
LiSt((B,”Me”>,(1,”Thi”>,(2,”3@”),(3,”538”),(1,”SISA”>,(3,”ge:”>,(3,”_>”),(2,”Cre”>,(2,”t”>>

val keyValuesDS = keyValues.toDS

keyValuesDS. groupByKey(p => p._1)
.mapGroups((k, vs) => (k, vs.foldLeft(””)((acc, p) => acc + p._2))).show()

e e L +
| 1] _2|
e +
ThisIsA
3 |Message:-)
Secret

t———t—m—————— - +

reduceByKey?

Challenge:
Emulate the semantics of reduceByKey on a Dataset using Dataset operations
presented so far. Assume we'd have the following data set:

val keyValues =
List((3,”Me”),(1,”Thi”),(2,”Se”),(3,”ssa”),(1,”sIsA”),(3,7ge:”),(3,7-)"),(2,7cre”),(2,7t”))

val keyValuesDS = keyValues.toDS

keyValuesDS. groupByKey(p => p._1)
.mapGroups((k, vs) => (k, vs.foldLeft(””)((acc, p) => acc + p._2))).show()

e +
| _T] _2]

e +
ThisIsA
3|Message:-)
Secret

ot ————— +

Let’s sort the records by id number! :-)

reduceByKey?

Challenge:
Emulate the semantics of reduceByKey on a Dataset using Dataset operations
presented so far. Assume we'd have the following data set:

val keyValues =
List((3,”Me”),(1,7Thi”), (2,7Se”),(3,”ssa”), (1,”sIsA”),(3,”ge:"),(3,7-)"),(2,”7cre”),(2,7t"))

val keyValuesDS = keyValues.toDS
keyValuesDS.groupByKey(p => p._1)

.mapGroups((k, vs) => (k, vs.foldLeft(””)((acc, p) => acc + p._2)))
.sort($7_1").show()

-t +
| _T] _2]
e +
T ThisIsA
Secret
3|Message:-)

t——— - +

reduceByKey?

Challenge:
Emulate the semantics of reduceByKey on a Dataset using Dataset operations
presented so far. Assume we'd have the following data set:

val keyValues =
List((3,”Me”),(1,”Thi”), (2,”Se”),(3,”ssa”),(1,”sIsA”),(3,7ge:”),(3,7-)"),(2,7cre”),(2,7t”))

val keyValuesDS = keyValues. toDS

keyValuesDS. groupByKey(p => p._1)
.mapGroups((k, vs) => (k, vs.foldLeft(””)((acc, p) => acc + p._2)))

The only issue with this approach is this disclaimer in the APl docs for mapGroups:

This function does not support partial aggregation, and as a result requires shuffling
all the data in the Dataset. If an appHeation intends to perform an aggregation
over each key, it is best to use t educgamction or an

org.apache.spark.sql.expressions#Aggregator.

reduceByKey?

Challenge:
Emulate the semantics of reduceByKey on a Dataset using Dataset operations
presented so far. Assume we'd have the following data set:

val keyValues =
List((3,”Me”),(1,”Thi”), (2,”Se”),(3,”ssa”), (1,”sIsA”),(3,7ge:”),(3,7-)"),(2,7cre”),(2,7t”))

val keyValuesDS = keyValues. toDS
keyValuesDS. groupByKey(p => p._1)

.mapValues(p => p._2)
.reduceGroups((acc, str) => acc + str)

That works! But the docs also suggested an Aggregator?
———

Aggregators

A class that helps you generically aggregate data. Kind of like the aggregate method we
saw on RDDs.

. . 1)
class Aggregator[-IN, BUF, OUT] ora &,Padae .:PWK S%\ e_htf./e l

aEE———

NS, Aj‘j M?W

» INis the input type to the aggregator. When using an aggregator after groupByKey,
this is the type that represents the value in the key/value pair.

» BUF is the intermediate type during aggregation.
> OUT is the type of the output of the aggregation.

Aggregators

A class that helps you generically aggregate data. Kind of like the aggregate method we
saw on RDDs.

class Aggregator[-IN, BUF, OUT]

> IN is the input type to the aggregator. When using an aggregator after groupByKey,
this is the type that represents the value in the key/value pair.

» BUF is the intermediate type during aggregation.
> OUT is the type of the output of the aggregation.

This is how implement our own Aggregator:

val myAgg = new Aggregator[IN, BUF, OUT] {

def zero: BUF = ... // The initial value.

def reduce(b: BUF, a: IN): BUF = ... // Add an element to the running total
def merge(bl1: BUF, b2: BUF): BUF = ... // Merge intermediate values.

def finish(b: BUF): OUT = ... // Return the final result.

}.toColumn

Emulating reduceByKey with an Aggregator

Let's return to our example of trying to emulate reduceByKey on a specific data
set, and let's see if we can implement the aggregation part of our reduceByKey
operation with an Aggregator.

val keyValues =
List((3,”Me”),(1,”Thi”), (2,”Se”),(3,”ssa”), (1,”sIsA”),(3,7ge:"),(3,”7-)"),(2,7cre”),(2,”t”))

val keyValuesDS = keyValues. toDS

Emulating reduceByKey with an Aggregator

Let's return to our example of trying to emulate reduceByKey on a specific data
set, and let's see if we can implement the aggregation part of our reduceByKey
operation with an Aggregator.

val keyValues =
List((3,”Me”), (1,7Thi”), (2,7Se”),(3,”ssa”),(1,”sIsA”),(3,7ge:"),(3,7-)"),(2,7cre”),(2,7t"))

val keyValuesDS = keyValues.toDS (r"h{-[-r;/\j)

val strConcat = new Aggregator[gf ?, ?21{ // Step 1: what should Aggregator’s
def zero: ? = 7?7 &\. // type parameters be?
def reduce(b: ?, a: ?2): ?2 = 7?7 53*'“31.
def merge(bl: ?, b2: ?): ?2 = 7?7

def finish(r: ?2): 2?2 = 7?77

}.toColumn J%TTfﬂg_\

Emulating reduceByKey with an Aggregator

Let's return to our example of trying to emulate reduceByKey on a specific data
set, and let's see if we can implement the aggregation part of our reduceByKey
operation with an Aggregator.

val keyValues =
List((3,”Me”),(1,”Thi”), (2,7Se”),(3,”ssa”), (1,”sIsA”),(3,"ge:”),(3,7-)"),(2,7cre”),(2,”7t”))

val keyValuesDS = keyValues.toDS

val strConcat = new Aggregator[(Int, String), String, Stringl{
def zero: ? = 7?7
def reduce(b: ?, a: ?2): ? = ?7?7? // Step 2: what should the rest of
def merge(bl: ?, b2: ?): ?2 = 7?7 // types be?
def finish(r: ?): ? = 2?77
}.toColumn

Emulating reduceByKey with an Aggregator

Let's return to our example of trying to emulate reduceByKey on a specific data
set, and let's see if we can implement the aggregation part of our reduceByKey
operation with an Aggregator.

val keyValues =
List((3,”Me”),(1,”Thi”),(2,7Se”),(3,”ssa”),(1,”sIsA”),(3,7ge:”),(3,7-)"),(2,7cre”),(2,7t"))

val keyValuesDS = keyValues.toDS

val strConcat = new Aggregator[(Int, String), String, Stringl{
def zero: String = ?7??
def reduce(b: String, a: (Int, String)): String = ?7? // Step 3: implement the
def merge(bl: String, b2: String): String = 77?7 // methods!
def finish(r: String): String = 77?7
}.toColumn

Emulating reduceByKey with an Aggregator

Let's return to our example of trying to emulate reduceByKey on a specific data
set, and let's see if we can implement the aggregation part of our reduceByKey
operation with an Aggregator.

val keyValues =
List((3,”Me”), (1,7Thi”),(2,7Se”),(3,”ssa”), (1,”sIsA”),(3,7ge:”),(3,7-)"),(2,7cre”),(2,7t”))

val keyValuesDS = keyValues. toDS

val strConcat = new Aggregator[(Int, String), String, String]{
def zero: String = 7”7
def reduce(b: String, a: (Int, String)): String = ??7? // Step 3: implement the
def merge(bl: String, b2: String): String = 7?7 // methods!
def finish(r: String): String = 77?7
}.toColumn

Emulating reduceByKey with an Aggregator

Let's return to our example of trying to emulate reduceByKey on a specific data
set, and let's see if we can implement the aggregation part of our reduceByKey
operation with an Aggregator.

val keyValues =
List((3,”Me”),(1,”Thi”), (2,7Se”),(3,”ssa”), (1,”sIsA”),(3,"ge:”),(3,7-)"),(2,7cre”),(2,”7t”))

val keyValuesDS = keyValues.toDS

val strConcat = new Aggregator[(Int, String), String, Stringl{
def zero: String = ””
def reduce(b: String, a: (Int, String)): String = b + a._2 // Step 3: implement the
def merge(bl: String, b2: String): String = 77?7 // methods!
def finish(r: String): String = 77?7
}.toColumn

Emulating reduceByKey with an Aggregator

Let's return to our example of trying to emulate reduceByKey on a specific data
set, and let's see if we can implement the aggregation part of our reduceByKey
operation with an Aggregator.

val keyValues =
List((3,”Me”),(1,”Thi”), (2,7Se”),(3,”ssa”), (1,”sIsA”),(3,"ge:”),(3,7-)"),(2,7cre”),(2,”7t”))

val keyValuesDS = keyValues.toDS

val strConcat = new Aggregator[(Int, String), String, Stringl{
def zero: String = ””
def reduce(b: String, a: (Int, String)): String = b + a._2
def merge(bl: String, b2: String): String = b1 + b2
def finish(r: String): String = r

}.toColumn

Emulating reduceByKey with an Aggregator

Let's return to our example of trying to emulate reduceByKey on a specific data
set, and let's see if we can implement the aggregation part of our reduceByKey
operation with an Aggregator.

val keyValues =
LiSt((3’ ”Me”>) (1) ”Thi”>) (2’ ”Se”>) (3’ ”Ssa”>) (1 }”SISA”>) (37 ”ge:”>) (37 ”_>”>) (27 ”Cre”>) (27 ”t”>>

val keyValuesDS = keyValues. toDS

val strConcat = new Aggregator[(Int, String), String, Stringl{
def zero: String = ””
def reduce(b: String, a: (Int, String)): String = b + a._2
def merge(bl: String, b2: String): String = b1 + b2
def finish(r: String): String = r
}.toColumn // Step 4: pass it to your aggregator!

keyValuesDS. groupByKey(pair => pair._1)
.agg(strConcat.as[String]l)

Emulating reduceByKey with an Aggregator

Let's return to our example of trying to emulate reduceByKey on a specific data
set, and let's see if we can implement the aggregation part of our reduceByKey
operation with an Aggregator.

val strConcat = new Aggregator[(Int, String), String, Stringl{
def zero: String = ”7”
def reduce(b: String, a: (Int, String)): String = b + a._2
def merge(bl: String, b2: String): String = b1 + b2
def finish(r: String): String = r

}.toColumn

keyValuesDS. groupByKey(pair => pair._1)
.agg(strConcat.as[String])

[error] object creation impossible, since: it has 2 unimplemented members.
[error] the missing signatures are as follows.

[error] def bufferEncoder: org.apache.spark.sql.Encoder[String] = ?7?7?
[error] def outputEncoder: org.apache.spark.sql.Encoder[String] = 7?7
[error] val strConcat = new Aggregator[(Int, String), String, Stringl{
[error] A

[error] one error found

Oops! We're missing 2 methods implementations. What’s an Encoder?

Encoders

Encoders are what convert your data between JVM objects and Spark SQL's specialized
internal (tabular) representation. They’re required by all Datasets!

Encoders are highly specialized, optimized code generators that generate custom
bytecode for serialization and deserialization of your data.

The serialized data is stored using Spark internal Tungsten binary format, allowing for
operations on serialized data and improved memory utilization.

What sets them apart from regular Java or Kryo serialization:

» Limited to and optimal for primitives and case classes, Spark SQL data types, which are
well-understood.

» They contain schema information, which makes these highly optimized code generators
possible, and enables optimization based on the shape of the data. Since Spark
understands the structure of data in Datasets, it can create a more optimal layout in
memory when caching Datasets.

» Uses significantly less memory than Kryo/Java serialization
» >10x faster than Kryo serialization (Java serialization orders of magnitude slower)

Encoders

Encoders are what convert your data between JVM objects and Spark SQL's specialized internal
representation. They’re required by all Datasets!

Two ways to introduce encoders:

» Automatically (generally the case) via implicits from a SparkSession. import
spark.implicits._

> Explicitly via org.apache.spark.sql.Encoder? which contains a large selection of methods
for creating Encoders from Scala primitive types and Products.

Encoders

Encoders are what convert your data between JVM objects and Spark SQL's specialized internal
representation. They’re required by all Datasets!

Two ways to introduce encoders:

» Automatically (generally the case) via implicits from a SparkSession. import
spark.implicits._

» Explicitly via org.apache.spark.sql.Encoder, which contains a large selection of methods
for creating Encoders from Scala primitive types and Products.

Some examples of ‘Encoder’ creation methods in ‘Encoders‘:

» INT/LONG/STRING etc, for nullable primitives.
» scalalnt/scalalong/scalaByte etc, for Scala’s primitives.
» product/tuple for Scala’s Product and tuple types.

Example: Explicitly creating Encoders.

Encoders.scalalnt // Encoder[Int]
Encoders.STRING // Encoder[String]
Encoders.product[Person] // Encoder[Person], where Person extends Product/is a case class

Emulating reduceByKey with an Aggregator

Let's return to our example of trying to emulate reduceByKey on a specific data
set, and let's see if we can implement the aggregation part of our reduceByKey
operation with an Aggregator.

val keyValues =
List((3,”Me”),(1,7Thi”), (2,”7Se”),(3,”ssa”),(1,”sIsA”),(3,7ge:”),(3,7-)"),(2,7cre”),(2,7t”))

val keyValuesDS = keyValues.toDS

val strConcat = new Aggregator[(Int, String), String, Stringl{
def zero: String= "”
def reduce(b: String, a: (Int, String)): String = b + a._2
def merge(bl: String, b2: String): String = bl + b2
def finish(r: String): String = r
override def bufferEncoder: Encoder[BUF]
override def outputEncoder: Encoder[OUT]
}.toColumn

77?7 // Step 4: Tell Spark which
777 // Encoders you need.

keyValuesDS. groupByKey(pair => pair._1)
.agg(strConcat.as[String])

Emulating reduceByKey with an Aggregator

Let's return to our example of trying to emulate reduceByKey on a specific data
set, and let's see if we can implement the aggregation part of our reduceByKey
operation with an Aggregator.

val keyValues =
List((3,”Me”),(1,7Thi”), (2,”7Se”),(3,”ssa”),(1,”sIsA”),(3,7ge:”),(3,7-)"),(2,7cre”),(2,7t”))

val keyValuesDS = keyValues.toDS

val strConcat = new Aggregator[(Int, String), String, Stringl{
def zero: String= "”
def reduce(b: String, a: (Int, String)): String = b + a._2
def merge(bl: String, b2: String): String = b1 + b2
def finish(r: String): String = r
override def bufferEncoder: Encoder[String] = Encoders.STRING
override def outputEncoder: Encoder[String] = Encoders.STRING
}.toColumn

keyValuesDS. groupByKey(pair => pair._1)
.agg(strConcat.as[String])

Emulating reduceByKey with an Aggregator

Let's return to our example of trying to emulate reduceByKey on a specific data
set, and let's see if we can implement the aggregation part of our reduceByKey
operation with an Aggregator.

val keyValues =
List((3,”Me”),(1,7Thi”), (2,”7Se”),(3,”ssa”),(1,”sIsA”),(3,7ge:”),(3,7-)"),(2,7cre”),(2,7t”))

val keyValuesDS = keyValues.toDS

val strConcat = new Aggregator[(Int, String), String, Stringl{
def zero: String= "”
def reduce(b: String, a: (Int, String)): String = b + a._2
def merge(bl: String, b2: String): String = b1 + b2

def finish(r: String): String = r WSS B +
override def bufferEncoder: Encoder[String] = Encoders.STRING // |value|anon$1(scala.Tuple?) |
override def outputEncoder: Encoder[String] = Encoders.STRING [/ +————- tmmm e +
}.toColumn // T ThisIsA
// 3 Message:-)
keyValuesDS. groupByKey(pair => pair._1) // 2 Secret

.agg(strConcat.as[String]).show YA —— e e o N

Common Dataset Actions

collect(): Arrayl[T]
Returns an array that contains all of Rows in this Dataset.

count(): Long
Returns the number of rows in the Dataset.

first(): T/head(): T
Returns the first row in this Dataset.

foreach(f: T => Unit): Unit
Applies a function f to all rows.

reduce(f: (T, T) =>T): T
Reduces the elements of this Dataset using the specified binary function.

show(): Unit
Displays the top 20 rows of Dataset in a tabular form.

take(n: Int): Array[T]
Returns the first n rows in the Dataset.

When to use Datasets vs DataFrames vs RDDs?

Use Datasets when...

you have structured/semi-structured data

you want typesafety

you need to work with functional APlIs

you need good performance, but it doesn't have to be the best

v v v Y

Use DataFrames when...

> you have structured/semi-structured data
» you want the best possible performance, automatically optimized for you

Use RDDs when...

» you have unstructured data
you need to fine-tune and manage low-level details of RDD computations
» you have complex data types that cannot be serialized with Encoders

\ 4

L imitations of Datasets

Catalyst Can’t Optimize All Operations

Take filtering as an example.

Relational filter operation E.g., ds.filter($”city”.as[String] === ”Boston”).

Performs best because you're explicitly telling Spark which columns/attributes and conditions
are required in your filter operation. With information about the structure of the data and the
structure of computations, Spark’s optimizer knows it can access only the fields involved in the
filter without having to instantiate the entire data type. Avoids data moving over the network.
Catalyst optimizes this case.

Functional filter operation E.g., ds.filter(p => p.city == ”Boston”).

Same filter written with a function literal is opaque to Spark — it's impossible for Spark to
introspect the lambda function. All Spark knows is that you need a (whole) record marshaled as
a Scala object in order to return true or false, requiring Spark to do porentially a lot more work
to meet that implicit requirement.

Catalyst cannot optimize this case.

L imitations of Datasets

Catalyst Can’t Optimize All Operations

Takeaways:

» When using Datasets with higher-order functions like map, you miss
out on many Catalyst optimizations.

» When using Datasets with relational operations like select, you get
all of Catalyst's optimizations.

» Though not all operations on Datasets benefit from Catalyst's
optimizations, Tungsten is still always running under the hood of
Datasets, storing and organizing data in a highly optimized way,
which can result in large speedups over RDDs.

L imitations of Datasets

Limited Data Types

If your data can’'t be expressed by case classes/Products and standard
Spark SQL data types, it may be difficult to ensure that a Tungsten
encoder exists for your data type.

E.g., you have an application which already uses some kind of complicated
regular Scala class.

L imitations of Datasets

Limited Data Types

If your data can’'t be expressed by case classes/Products and standard

Spark SQL data types, it may be difficult to ensure that a Tungsten
encoder exists for your data type.

E.g., you have an application which already uses some kind of complicated
regular Scala class.

Requires Semi-Structured/Structured Data

If your unstructured data cannot be reformulated to adhere to some kind
of schema, it would be better to use RDDs.

