
)
,.

ECOLE POLYTECHNIO!)E
FEDERALE DE LAUSANNE

Example

Let's say we've just done the following computation on a DataFrame
representing a data set of Listings of homes for sale; we've computed the
average price of for sale per zipcode.

case class Listing(street: String, zip: Int, price: Int)

val listingsDF = ... // DataFrame of Listings

import org.apache.spark.sql.functions._
val averagePricesDF = listingsDF.groupBy($"zip")

. avg(''price'')

Example

Let's say we've just done the following computation on a DataFrame
representing a data set of Listings of homes for sale; we've computed the
average price of for sale per zipcode.

case class Listing(street: String, zip: Int, price: Int)

val listingsDF = ... // DataFrame of Listings

import org.apache.spark.sql.functions._
val averagePricesDF = listingsDF.groupBy($"zip")

. avg(''price'')

Great. Now let's call collect() on averagePricesDF to bring it back to the
master node ...

Example

val averagePrices = averagePricesDF.collect()

// averagePrices: Array[org.apache.spark.sql.Row]

Oh no. What is th is? What's in th is Row thing again?

Example

val averagePrices = averagePricesDF.collect()

// averagePrices: Array[org.apache.spark.sql.Row]

Oh no. What is th is? What's in th is Row thing again?

Oh right, I have to cast things because Rows don't have type information

associated with them. How many columns were my result again? And

what were their types?

val averagePricesAgain = averagePrices.map {

row => (row(0).aslnstance0f[String], row(1).aslnstance0f[Int])

}

Example

val averagePrices = averagePricesDF.collect()

// averagePrices: Array[org.apache.spark.sql.Row]

Oh no. What is th is? What's in th is Row thing again?

Oh right, I have to cast things because Rows don't have type information

associated with them. How many columns were my result again? And

what were their types?

val averagePricesAgain = averagePrices.map {

row => (row(0).aslnstance0f[String], row(1).aslnstance0f[Int])

}

Nope.

// java.lang.ClassCastException

Example

Let's try to see what's in this Row thing. (Consults Row API docs.)

averagePrices.head.schema.printTreeString()
II root
II 1-- zip: integer (nullable = true)
II 1-- avg(price): double (nullable = true)

Example

Let's try to see what's in this Row thing. (Consults Row API docs.)

averagePrices.head.schema.printTreeString()
II root
II 1-- zip: integer (nullable = true)
II 1-- avg(price): double (nullable = true)

Trying again ...

yay!

val averagePricesAgain = averagePrices.map {
row => (row(0).aslnstanceOf[Int], row(1).aslnstanceOf[Double]) II Ew ...

}
II mostExpensiveAgain: Array[(Int, Double)]

Example

Let's try to see what's in this Row thing. (Consults Row API docs.)

averagePrices.head.schema.printTreeString()
II root
II 1-- zip: integer (nullable = true)
II 1-- avg(price): double (nullable = true)

Try i n g a g a i n ...

val averagePricesAgain = averagePrices.map {
row => (row(0).aslnstanceOf[Int], row(1).aslnstanceOf[Double]) II Ew ...

}
II mostExpensiveAgain: Array[(Int, Double)]

Wouldn't it be nice if we could have both Spark SQL optimizations and

typesaf ety?

Datasets

Enter Datasets.

Confession

I've been keeping something from you ...

DataFrames are Datasets�

DataFrames are actually Datasets.

type DataFrame = Dataset[Row]

1'

DataFrames are Datasets�

DataFrames are actually Datasets.

type DataFrame = Dataset[Row]

';_� What the heck is a Dataset?

DataFrames are Datasets�

DataFrames are actually Datasets.

type DataFrame = Dataset[Row]

'-_� What the heck is a Dataset?

...,. Datasets can be thought of as typed distributed collections of data.
� _,.

111-- Dataset API unifies the DataFrame and RDD APls. Mix and match! �
�

...,. Datasets require strucutred/semi-structured data. Schemas and
Encoders core part of Datasets.

Think of Datasets as a compromise between RDDs & DataFrames.

You get more type information on Datasets than on DataFrames, and you
get more optimizations on Datasets than you get on RDDs.

DataFrames are Datasets�

Example:

Let's calculate the average home price per zipcode with Datasets.
Assuming listingsDS is of type Dataset[Listing]:

¥A
listingsDS.groupByKey(l => l.zip)

.agg(avg($"price") .as[Double])

We can freely mix APls!

// looks like groupByKey on RDDs!
// looks like our DataFrame operators!

Datasets

Datasets are a something in the middle between DataFrames and RDDs

...,. You can still use relational DataFrame operations as we learned in previous
sessions on Datasets .

...,. Datasets add more typed operations that can be used as well.

...,. Datasets let you use higher-order functions like map, flatMap, filter again!

Datasets

Datasets are a something in the middle between DataFrames and RDDs

...,. You can still use relational DataFrame operations as we learned in previous
sessions on Datasets .

...,. Datasets add more typed operations that can be used as well.

...,. Datasets let you use higher-order functions like map, flatMap, filter again!

Datasets can be used when you want a mix of functional and relational
transformations while benefiting from some of the optimizations on DataFrames.

And we've almost got a type safe API as well.

Creating Datasets

From a DataFrame.

Just use the toDS convenience method.

myDF.toDS II requires import spark.implicits._

Note that often it's desirable to read in data from JSON from a file, which can be done
with the read method on the SparkSession object like we saw in previous sessions, and
then converted to a Dataset:

val myDS = spark.read.json("people.json").as[Person]

Creating Datasets

From a DataFrame.
Just use the toDS convenience method.

myDF.toDS II requires import spark.implicits._

Note that often it's desirable to read in data from JSON from a file, which can be done
with the read method on the SparkSession object like we saw in previous sessions, and
then converted to a Dataset:

val myDS = spark.read.json("people.json").as[Person]

From an RDD.
Just use the toDS convenience method.

myRDD.toDS II requires import spark.implicits._

Creating Datasets

From a DataFrame.
Just use the toDS convenience method.

myDF.toDS II requires import spark.implicits._

Note that often it's desirable to read in data from JSON from a file, which can be done
with the read method on the SparkSession object like we saw in previous sessions, and
then converted to a Dataset:

val myDS = spark.read.json("people.json").as[Person]

From an RDD.
Just use the toDS convenience method.

myRDD.toDS II requires import spark.implicits._

From common Scala types.
Just use the toDS convenience method.

List("yay", "ohnoes", "hooray!").toDS II requires import spark.implicits._

Typed Columns

Recall the Column type from DataFrames. On Datasets, typed operations
tend to act on TypedColumn instead.

<console>:58: error: type mismatch;

found : org.apache.spark.sql.Column

required: org.apache.spark.sql.TypedColumn[... J

.agg(avg($"price")).show
A

Typed Columns

Recall the Column type from DataFrames. On Datasets, typed operations
tend to act on TypedColumn instead.

<console>:58: error: type mismatch;

found : org.apache.spark.sql.Column

required: org.apache.spark.sql.TypedColumn[... J

.agg(avg($"price")).show
A

To create a TypedColumn, all you have to do is call as[... J on your
(untyped) Column.

$"price".as[Double] // this now represents a TypedColumn.

Transformations on Datasets

Remember untyped transformations from DataFrames?

Transformations on Datasets

Remember untyped transformations from DataFrames?

The Dataset API includes both untyped and typed transformations.

untyped transformations the transformations we learned on DataFrames.

typed transformations typed variants of many DataFrame transformations +
additional transformations such as ROD-like higher-order functions map, flatMap,

etc.

Transformations on Datasets

Remember untyped transformations from DataFrames?

The Dataset API includes both untyped and typed transformations.

untyped transformations the transformations we learned on DataFrames.

typed transformations typed variants of many DataFrame transformations +

additional transformations such as ROD-like higher-order functions map, flatMap,
etc.

These APls are integrated. You can call a map on a DataFrame and get back a Dataset,

for example.

Caveat: not every operation you know from RDDs are available on Datasets, and not all

operations look 100% the same on Datasets as they did on RDDs.

But remember, you may have to explicitly provide type information when going

from a DataFrame to a Dataset via typed transformations.

val keyValuesDF = List((3,"Me"),(1,"Thi"),(2,"Se"),(3,"ssa"),(3,"-)"),(2,"cre"),(2,"t")).toDF

val res = keyValuesDF.map(row => row(0).asinstanceOf[Int] + 1) // Ew ...

Common (Typed) Transformations on Datasets

map

flatMap

filter

distinct

map[U](f: T => U): Dataset[U]

Apply function to each element in the Dataset and return a
Dataset of the resu It.

flatMap[U](f: T => TraversableOnce[U]): Dataset[U]

Apply a function to each element in the Dataset and return a
Dataset of the contents of the iterators returned.

filter(pred: T => Boolean): Dataset[T]

Apply predicate function to each element in the Dataset
and return a Dataset of elements that have passed the predicate
condition, pred.

distinct(): Dataset[T]

Return Dataset with duplicates removed.

Common (Typed) Transformations on Datasets

groupByKey groupByKey[K](f: T => K):

KeyValueGroupedDataset[K, T]

Apply function to each element in the Dataset and return a

Dataset of the resu It.

coalesce coalesce(numPartitions: Int): Dataset[T]

Apply a function to each element in the Dataset and return

a Dataset of the contents of the iterators returned.

repartition repartition(numPartitions: Int): Dataset[T]

Apply predicate function to each element in the Dataset

and return a Dataset of elements that have passed the predicate

condition, pred.

Grouped Operations on Datasets

Li ke on DataFrames, Datasets have a special set of aggregation operations

meant to be u sed after a call to groupByKey on a Dataset .

...,. calling groupByKey on a Dataset returns a KeyValueGroupedDataset

...,. KeyValueGroupedDatasetcontains a num ber of aggregation operations

which return Datasets

Grouped Operations on Datasets

Like on DataFrames, Datasets have a special set of aggregation operations
meant to be used after a call to groupByKey on a Dataset .

...,. calling groupByKey on a Dataset returns a KeyValueGroupedDataset

...,. KeyValueGroupedDatasetcontains a number of aggregation operations
which return Datasets

How to group & aggregate on Datasets?

1. Call groupByKey on a Dataset, get back a KeyValueGroupedDataset.

2. Use an aggregation operation on KeyValueGroupedDataset (return
Datasets)

Note: using groupBy on a Dataset, you will get back a RelationalGroupedDataset whose
aggregation operators will return a DataFrame. Therefore, be careful to avoid groupBy if you
would like to stay in the Dataset AP/.

Some KeyValueGroupedDataset Aggregation Operations

reduceGroups reduceGroups(f: (V, V) => V): Dataset[(K, V)]

agg

Reduces the elements of each group of data using the spec­

ified binary function. The given function must be commutative

and associative or the result may be non-deterministic.

agg[U](col: TypedColumn[V, U]): Dataset[(K, U)]

Computes the given aggregation, returning a Dataset of tu pies for

each unique key and the result of computing this aggregation over

all elements in the group.

Using the General agg Operation

Just like on Dataframes, there exists a general aggregation operation agg defined
on KeyValueGroupedDataset.

agg[UJ(col: TypedColumn[V, UJ): Dataset[(K, U)J

The only thing a bit peculiar about this operation is its argument. What

do we pass to it?

Using the General agg Operation

Just like on Dataframes, there exists a general aggregation operation agg defined

on KeyValueGroupedDataset.

agg[UJ(col: TypedColumn[V, UJ): Dataset[(K, U)J

The only thing a bit peculiar about this operation is its argument. What

do we pass to it?

Typically, we simply select one of these operations from function, such as avg,

choose a column for avg to be computed on, and we pass it to agg.

someDS. agg(avg($''column''))
d t

Using the General agg Operation

Just like on Dataframes, there exists a general aggregation operation agg defined

on KeyValueGroupedDataset.

agg[UJ(col: TypedColumn[V, UJ): Dataset[(K, U)J

Typically, we simply select one of these operations from function, such as avg,

choose a column for avg to be computed on, and we pass it to agg.

someDS.agg(avg($"column"))
// [error] found : org.apache.spark.sql.Column
// [error] required: org.apache.spark.sql.TypedColumn[Listing, ?J
// [error] .agg(avg($"column"))
// [error] A

// [error] one error found

Oops. TypedColumn! Remember that we have to use as[...] to convert our
untyped regular Column into a TypedColumn.

Using the General agg Operation

Just like on Dataframes, there exists a general aggregation operation agg defined

on KeyValueGroupedDataset.

agg[UJ(col: TypedColumn[V, UJ): Dataset[(K, U)J

Typically, we simply select one of these operations from function, such as avg,

choose a column for avg to be computed on, and we pass it to agg.

someDS.agg(avg($"column")�.as[DoubleJ)

All better now.

Some KeyVa l ueG rou pedDa t a s e t (Aggregation) Operations

mapGroups mapGroups[U](f: (K, Iterator[V]) => U): Dataset[U]

Applies the given function to each group of data. For each unique
group, the function will be passed the group key and an iterator
that contains all of the elements in the group. The function can
return an element of arbitrary type which wi 1 1 be returned as a
new Dataset.

flatMapGroups flatMapGroups[U](f: (K, Iterator[V])

=> TraversableOnce[U]): Dataset[U]

Applies the given function to each group of data. For each
unique group, the function will be passed the group key and
an iterator that contains all of the elements in the group. The
function can return an iterator containing elements of an arbitrary
type which will be returned as a new Dataset.

Note: a t the time of writing, KeyVa l ueG rou pedDa ta se t is marked as @Experimen tal and @Evolving.

Therefore, expect th is A P/ to fluctua te-it 's likely tha t new aggrega tion opera tions will be added

and others could be changed.

reduceByKey?

I f you glance around the Dataset API docs, you might notice that Datasets are
missing an important transformation th at we often used on RDDs : reduceByKey.

red u ceByKey?

I f yo u g l a n ce a ro u n d t h e Da tase t A P I docs , yo u m ight n ot i ce t h at Da tase ts a re

m i ss i n g a n i m porta n t t ra n sfo rm at i o n t h at we ofte n u sed o n RDDs : reduceByKey .

Cha l lenge :

E m u l a te t h e se m a nt i cs of reduceByKey o n a Da taset u s i ng Da tase t o p e rat io n s

p rese n ted so fa r . Assu m e we ' d h ave t h e fo l l ow i n g d ata set :

va l keyVa l ues =

L i s t ((3 , " Me") , (1 , "Th i ") , (2 , " Se") , (3 , " ssa ") , (1 , " s i sA") , (3 , " ge : ") , (3 , " -) ") , (2 , " e re ") , (2 , " t "))

F i n d a way to u se Da ta se ts to a c h i eve t h e sa m e resu l t t h at yo u wo u l d get i f yo u

p u t t h i s d ata i n to a n R O D a n d ca l l ed :

keyVa l uesRDD . redu ceBy ey (_+_)

Try it on you r own now !

Note: the objective is just to use the A P/s presented so far, don 't worry about performance for

now.

reduceByKey?

Cha l lenge :

E mulate the semantics of reduceByKey on a Dataset using Dataset operations
presented so far. Assume we'd have the following data set : Do..�se.+- t c l �, str<j1
val keyVa l ues =

L i s t ((3 , " Me ") , (1 , " Th i ") , (2 , " Se ") , (3 , " ss a ") , (1 , " s i sA") , (3 , " ge : ") , (3 , " -) ") , (2 , " e re ") , (2 , " t "))

val keyVa l uesDS = keyVa l ues . toDS --- +......_

keyVa l uesDS . g rou pByKey (p => p . _ 1)

. ma pG rou ps ((k , vs) => (k , vs . fo l d left (" ") ((acc , p) => ace + p . _2)))

reduceByKey?

Cha l lenge :

E mulate the semantics of reduceByKey on a Dataset using Dataset operations
presented so far. Assume we'd have the following data set :

val keyVa l ues =

L i s t ((3 , " Me ") , (1 , " Th i ") , (2 , " Se ") , (3 , " ss a ") , (1 , " s i sA") , (3 , " ge : ") , (3 , " -) ") , (2 , " e re ") , (2 , " t "))

val keyVa l uesDS = keyVa l ues . toDS

keyVa l uesDS . g rou pByKey (p => p . _ 1)

. ma pG rou ps ((k , vs) => (k , vs . fo l d left (" ") ((acc , p) => ace + p . _2))) . s how ()

+ - - -+- - - - - - - - - -+

I _ 1 I _ 2 1

+ - - -+- - - - - - - - - -+

1 I T h i s i sA I

I 3 I Me ssage : -) I

I 2 1 Sec re t I

+ - - -+- - - - - - - - - -+

reduceByKey?

Challenge:
E mulate the semantics of reduceByKey on a Dataset using Dataset operations
presented so far. Assume we'd have the following data set :

val keyValues =

List ((3, "Me"), (1, "Thi"), (2, "Se"), (3, "ssa"), (1, "sisA"), (3, "ge : "), (3, "-) "), (2, "ere"), (2, "t"))

val keyValuesDS = keyValues.toDS

keyValuesDS.groupByKey(p => p._1)

.mapGroups((k, vs) => (k, vs.foldleft("")((acc, p) => ace + p._2))).show()

+---+----------+

I _ 1 I _2 1

+---+----------+

1 I ThisisA I

I 3 1 Message : -) I

I 2 1 Secret I

+---+----------+

Let's sort the records by id number! : -)

reduceByKey?

C ha l lenge :

Em u l ate t h e sem a n t i cs of reduceByKey o n a Da t a s e t u s i n g Da ta s e t o pe rat io n s

p rese n ted so fa r . Assu m e we ' d h ave t h e fo l l ow i ng d ata set :

val keyVa l ue s =

L i s t ((3 , " Me ") , (1 , " Th i ") , (2 , " Se ") , (3 , " s sa ") , (1 , " s i sA") , (3 , " ge : ") , (3 , " -) ") , (2 , " e re ") , (2 , " t "))

val keyVa l ue sDS = keyVa l ues . toDS

keyVa l ue sDS . g roupByKey (p => p . _ 1)

. ma pG roups ((k , vs) => (k , vs . fo l d left (" ") ((a cc , p) => a ce + p . _2)))

. so r t ($" _ 1 ") . s how ()

+ - - -+- - - - - - - - - - +

I _ 1 I _ 2 1

+ - - -+- - - - - - - - - - +

1 I T h i s i sA I

I 2 1 Sec re t !

I 3 I Me ssage : -) I

+ - - - + - - - - - - - - - - +

reduceByKey?

Cha l lenge :

E mulate the semantics of reduceByKey on a Dataset using Dataset operations
presented so far. Assume we'd have the following data set :

val keyVa l ues =

L i s t ((3 , " Me ") , (1 , " Th i ") , (2 , " Se ") , (3 , " ss a ") , (1 , " s i sA") , (3 , " ge : ") , (3 , " -) ") , (2 , " e re ") , (2 , " t "))

val keyVa l uesDS = keyVa l ues . toDS

keyVa l uesDS . g rou pByKey (p => p . _ 1)

. ma pG rou ps ((k , vs) => (k , vs . fo l d left (" ") ((acc , p) => ace + p . _2)))

The on ly issue with th is approach is th is d isc la imer i n the A P I docs for mapGroups :

This function does not support partial aggrega tion, and as a result requires sh uffling
all the da ta in the Da taset. If an dJ,J,,,1-_ff'H-iitJ...L ion in tends to perform an aggrega tion
over each key, it is best to use t educe nction or an
org. apache. spark. sq/. expressions#Aggrega tor.

reduceByKey?

Cha l lenge :

E mulate the semantics of reduceByKey on a Dataset using Dataset operations
presented so far. Assume we'd have the following data set :

val keyVa l ues =

L i s t ((3 , " Me ") , (1 , " Th i ") , (2 , " Se ") , (3 , " ss a ") , (1 , " s i sA") , (3 , " ge : ") , (3 , " -) ") , (2 , " e re ") , (2 , " t "))

val keyVa l uesDS = keyVa l ues . toDS

keyVa l uesDS . g rou pByKey (p => p . _ 1)

. ma pVa l ues (p => p . _2)

. red u ceG rou ps ((a cc , s t r) => ace + s t r)

That works ! But the docs a lso suggested an Aggregator?

Aggregators

A c l a ss t h at h e l ps yo u ge n e r i ca l l y aggregate d ata . K i n d of l i ke t h e aggrega te m ethod we
saw on R D Ds .

class Aggrega to r [- IN , BUF , OUT]

_... IN i s t h e i n p u t type to t h e aggregator . Wh e n u s i n g a n aggregator afte r g roupByKey ,
t h i s i s t h e type th at re prese nts t h e va l u e i n t h e key /va l u e pa i r .

_... BUF i s t h e i n te rm ed i ate typ e d u r i n g a ggregat i on .

..., OUT i s t h e type of t h e o u t p u t of th e aggregat ion .

Aggregators

A c l a ss t h at h e l ps yo u ge n e r i ca l l y aggregate d ata . K i n d of l i ke t h e aggregate m ethod we
saw on R D Ds .

class Aggregator[- IN, BUF, OUT]

IN i s t h e i n p u t type to t h e aggregator . Wh e n u s i ng a n aggregator afte r groupByKey,
t h i s i s t h e type th at re prese nts t h e va l u e i n t h e key /va l u e pa i r .

BUF i s t h e i n te rm ed i ate typ e d u r i n g a ggregat i on .

OUT i s t h e type of t h e o u t p u t of th e aggregat ion .

This is how i m plement ou r own Aggregator :

val myAgg = new Aggregator[IN, BUF, OUT] {
def zero : BUF = ...
def reduce(b : BUF, a : IN) : BUF = .. .
def merge(b 1 : BUF, b2 : BUF) : BUF = .. .
def finish(b : BUF) : OUT = ...

}.toColumn

II The initial value.
II Add an element to the running total
II Merge intermediate values.
II Return the final result.

E m u l at i n g red u ceByKey w i t h a n Agg rega to r

Let's return to our example of trying to emulate reduceByKey on a specific data
set, and let's see if we can implement the aggregation part of our reduceByKey
operation with an Aggregator.

val keyVa l ue s =

L i s t ((3 , " Me ") , (1 , " Th i ") , (2 , " Se ") , (3 , " s s a ") , (1 , " s i sA") , (3 , " ge : ") , (3 , " -) ") , (2 , " e re ") , (2 , " t "))

val keyVa l ue s DS = keyVa l ue s . toDS

E m u l at i n g red u ceByKey w i t h a n Agg rega to r

Let's return to our example of trying to emulate reduceByKey on a specific data
set, and let's see if we can implement the aggregation part of our reduceByKey
operation with an Aggregator.

val keyValues =

List ((3, "Me"), (1, "Thi"), (2, "Se"), (3, "ssa"), (1, "sisA"), (3, "ge : "), (3, "-) "), (2, "ere"), (2, "t"))

va l keyVa l u e s DS = keyVa l u e s . toDS (�hf-fr;�)
I

val strConcat = new Aggregator[?, ?, ?] { // Step 1 : what should Aggregator ' s

def zero : ? = ? ? ?

def reduce(b : ?, a : ?) : ? = ? ? ?

def merge(b l : ?, b2 : ?) : ? = ? ? ?

def finish(r : ?) : ? = ? ? ?

}.toColumn

\.
I I type pa rame te rs be ?

Sf<iJ--

E m u l at i n g red u ceByKey w i t h a n Agg rega to r

Let's return to our example of trying to emulate reduceByKey on a specific data
set, and let's see if we can implement the aggregation part of our reduceByKey
operation with an Aggregator.

val keyValues =

List ((3, "Me"), (1, "Thi"), (2, "Se"), (3, "ssa"), (1, "sisA"), (3, "ge : "), (3, "-) "), (2, "ere"), (2, "t"))

val keyValuesDS = keyValues.toDS

val strConcat = new Aggregator[(Int, St r i ng) , St r i ng , St r i ng] {

def zero : ? = ? ? ?

def reduce(b : ? , a : ?) : ? = ? ? ?

def merge(b l : ? , b2 : ?) : ? = ? ? ?

def finish(r : ?) : ? = ? ? ?

}.toColumn

I I Step 2 : what should the rest of

I I types be?

E m u l at i n g red u ceByKey w i t h a n Agg rega to r

Let's return to our example of trying to emulate reduceByKey on a specific data
set, and let's see if we can implement the aggregation part of our reduceByKey
operation with an Aggregator.

val keyValues =

List ((3, "Me"), (1, "Thi"), (2, "Se"), (3, "ssa"), (1, "sisA"), (3, "ge : "), (3, "-) "), (2, "ere"), (2, "t"))

val keyValuesDS = keyValues.toDS

val strConcat = new Aggregator[(Int, St r i ng) , St r i ng , St r i ng] {

def zero : St r i ng = ? ? ?

def reduce(b : St r i ng , a : (I nt , St r i ng)) : St r i ng = ? ? ?

def merge(b l : St r i ng , b2 : St r i ng) : St r i ng = ? ? ?

def finish(r : St r i ng) : St r i ng = ? ? ?

}.toColumn

// Step 3 : implement the

// methods !

•

E m u l at i n g red u ceByKey w i t h a n Agg rega to r

Let ' s retu rn to o u r exa m p l e of t ry i n g to e m u l ate red uceByKey o n a spec i f i c d a ta

set , a n d l et ' s see if we ca n i m p l e m en t t h e aggregat io n pa rt of o u r red uceByKey

ope rat io n w it h a n Agg rega to r .

val keyVa l ues =

L i s t ((3 , " Me") , (1 , "Th i ") , (2 , " Se") , (3 , " ssa ") , (1 , " s i sA") , (3 , "ge : ") , (3 , " -) ") , (2 , " e re") , (2 , " t "))

val keyVa l uesDS = keyVa l ues . toDS

val st rConcat = new Aggrega to r [(I nt , St ri ng) , St r ing , St r ing] {

def ze ro : St r ing = " "

def reduce (b : St ring , a : (Int , St ri ng)) : St r ing = ?? ?

def me rge (b 1 : St ring , b2 : St ri ng) : St r i ng = ?? ?

def f i n i s h (r : St ring) : St ri ng = ? ? ?

} . toCol umn

/ / Step 3 : i mpleme n t t h e

/ / me t hods !

E m u l at i n g red u ceByKey w i t h a n Agg rega to r

Let's return to our example of trying to emulate reduceByKey on a specific data
set, and let's see if we can implement the aggregation part of our reduceByKey
operation with an Aggregator.

val keyValues =

List ((3, "Me"), (1, "Thi"), (2, "Se"), (3, "ssa"), (1, "sisA"), (3, "ge : "), (3, "-) "), (2, "ere"), (2, "t"))

val keyValuesDS = keyValues.toDS

val strConcat = new Aggregator[(Int, St r i ng) , St r i ng , St r i ng] {

def zero : St r i ng = " "

def reduce(b : St r i ng , a : (I nt , St r i ng)) : St r i ng = b + a._2 // Step 3 : implement the

def merge(b l : St r i ng , b2 : St r i ng) : St r i ng = ? ? ? // methods !

def finish(r : St r i ng) : St r i ng = ? ? ?

}.toColumn

E m u l at i n g red u ceByKey w i t h a n Agg rega to r

Let's return to our example of trying to emulate reduceByKey on a specific data
set, and let's see if we can implement the aggregation part of our reduceByKey
operation with an Aggregator.

val keyValues =

List ((3, "Me"), (1, "Thi"), (2, "Se"), (3, "ssa"), (1, "sisA"), (3, "ge : "), (3, "-) "), (2, "ere"), (2, "t"))

val keyValuesDS = keyValues.toDS

val strConcat = new Aggregator[(Int, St r i ng) , St r i ng , St r i ng] {

def zero : St r i ng = " "

def reduce(b : St r i ng , a : (I nt , St r i ng)) : St r i ng = b + a._2

def merge(b l : St r i ng , b2 : St r i ng) : St r i ng = b l + b2

def finish(r : St r i ng) : St r i ng = r

}.toColumn

E m u l at i n g red u ceByKey w i t h a n Agg rega to r

Let's return to our example of trying to emulate reduceByKey on a specific data
set, and let's see if we can implement the aggregation part of our reduceByKey
operation with an Aggregator.

val keyVa l ues =

L i s t ((3 , " Me ") , (1 , " Th i ") , (2 , " Se ") , (3 , " ss a ") , (1 , " s i sA") , (3 , " ge : ") , (3 , " -) ") , (2 , " e re ") , (2 , " t "))

val keyVa l uesDS = keyVa l ues . toDS

val s t rCon ca t = new Agg rega to r [(Int , St r i ng) , St r i ng , St r i ng] {

def ze ro : St r i ng = " "

def red uce (b : St r i ng , a : (I nt , St r i ng)) : St r i ng = b + a . _ 2

def me rge (b l : St r i ng , b2 : St r i ng) : St r i ng = b l + b2

def f i n i s h (r : St r i ng) : St r i ng = r

} . toCo l umn

keyVa l ue sDS . g roupByKey (pa i r => pa i r . _ 1)

. agg (s t rCon ca t . a s [St r i ng])

/ / S te p 4 : pa s s i t to you r agg rega to r !

E m u l at i n g red u ceByKey w i t h a n Agg rega to r

Let's return to our example of trying to emulate reduceByKey on a specific data
set, and let's see if we can implement the aggregation part of our reduceByKey
operation with an Aggregator.

val strConcat = new Aggregator[(Int, St r i ng) , St r i ng , St r i ng] {

def zero : St r i ng = " "

def reduce(b : St r i ng , a : (I nt , St r i ng)) : St r i ng = b + a._2

def merge(b l : St r i ng , b2 : St r i ng) : St r i ng = b l + b2

def finish(r : St r i ng) : St r i ng = r

}.toColumn

keyValuesDS.groupByKey(pair => pair._1)

. agg (s t rCon ca t . a s [St r i ng])

[e r ro r] obj ect c rea t i on i mposs i b l e , s i nce : i t h a s 2 u n i mp l eme n ted membe rs .

[e r ro r] t he m i s s i ng s i gn a t u re s a re a s fo l l ows .

[e r ro r] d e f buffe rEn code r : o rg . a pache . s pa rk . sq l . E n code r [S t r i ng] = ? ? ?

[e r ro r] d e f ou tpu t E n code r : o rg . a pache . s pa rk . sq l . E n code r [S t r i ng] = ? ? ?

[e r ro r] va l s t rConca t = new Agg rega to r [(I n t , S t r i ng) , S t r i ng , S t r i ng] {

[e r ro r] I\

[e r ro r] one e r ro r found

Oops ! We ' re miss ing 2 methods im plementations . What ' s an Encoder?

Encoders

Encoders are what convert your data between JV M objects and Spark SQ L's specialized
internal (tabular) representation. They 're required by all Datasets !

Encoders are highly specialized, optimized code generators that generate custom
bytecode for serialization and deserialization of your data.

The serialized data is stored using Spark internal Tungsten binary format, allowing for
operations on seria I ized data and improved memory uti I ization.

What sets them apart from regu lar J ava or K ryo seria l ization :

L i m ited to a n d o pt i m a l for pr i m i t ives a n d case c l a sses , S pa r k SQ L d ata types , w h i c h a re
we l 1 - u n d e rstood .
They contai n schema i nformation , wh i c h m a kes t h ese h igh ly o pt i m ized code ge n e rators
poss i b l e , a n d e n a b l es o pt i m i zat i o n based o n t h e s h a p e of t h e d ata . S i n ce S pa rk
u n d e rsta n ds the st ru ct u re of d ata i n D atasets , i t ca n c reate a m ore o pt i m a l l ayo u t i n
m e m ory w h e n ca c h i n g D atasets .

� U ses s i gn i f i ca nt ly l ess m e m ory t h a n K ryo/ J ava se r i a l i za t ion
� > l Ox fa ste r t h a n K ryo se r i a l i za t ion (J ava se r i a l i zat io n ord e rs of m a gn it u d e s l owe r)

Encoders

E n code rs a re w h at co n ve rt yo u r d ata betwee n J V M o bjects a n d S pa rk S Q L ' s spec i a l i zed i nte rn a l
re prese ntat i o n . They ' re req u i red by a l l Data sets !

Two ways to introduce enco ders :

Automatica l ly (ge n e ra l ly t h e case) v i a i m p l i c i ts fro m a Spa rkSe ss i on . i mpo rt
s pa rk . i mp l i c i t s . _

Exp l ic it ly v i a o rg . a pa c h e . s pa rk . sq l . E n code r1 w h i c h co nta i n s a l a rge se l ect i o n of m et h od s
for c reat i n g E n code rs fro m Sca l a pr i m i t ive ty pes a n d P roducts .

Encoders

E n code rs a re w h at co n ve rt yo u r d ata betwee n J V M o bjects a n d S pa rk S Q L ' s spec i a l i zed i nte rn a l
re prese ntat i o n . They ' re req u i red by a l l Data sets !

Two ways to introduce enco ders :

Automatica l ly (ge n e ra l ly t h e case) v i a i m p l i c i ts fro m a Spa rkSe ss i on . i mpo rt
s pa rk . i mp l i c i t s . _

Exp l ic it ly v i a o rg . a pa c h e . s pa rk . sq l . E n code r , w h i c h co nta i n s a l a rge se l ect i o n of m et h od s
for c reat i n g E n code rs fro m Sca l a pr i m i t ive ty pes a n d P roducts .

Some exam ples of · Encoder · creation metho ds i n · Encoders · :

_.... I NT / LONG/ STR I NG etc , for nu/fable pr i m i t ives .

_.... sca l a i n t / s ca l a long/ s ca l a Byte etc , for Sea l a ' s pr i m i t ives .

_.... p rod uct / t u p l e for Sca l a ' s P rod u c t a n d t u p l e types .

Exam ple : Exp l i c i t ly c reat i n g E n code rs .

E n code rs . s ca l a i n t / / E n code r [I n t]
E n code rs . STR I NG / / E n code r [S t r i ng]
E n code rs . p rod u c t [Pe rson] // E n code r [Pe rson] , whe re Pe rson extends P rodu ct / i s a ca se c l a s s

E m u l at i n g red u ceByKey w i t h a n Agg rega to r

Let's return to our example of trying to emulate reduceByKey on a specific data
set, and let's see if we can implement the aggregation part of our reduceByKey
operation with an Aggregator.

val keyValues =

List ((3, "Me"), (1, "Thi"), (2, "Se"), (3, "ssa"), (1, "sisA"), (3, "ge : "), (3, "-) "), (2, "ere"), (2, "t"))

val keyValuesDS = keyValues.toDS

val strConcat = new Aggregator[(Int, St r i ng) , St r i ng , St r i ng] {

def zero : St r i ng= " "

def reduce(b : St r i ng , a : (I nt , St r i ng)) : St r i ng = b + a._2

def merge(b l : St r i ng , b2 : St r i ng) : St r i ng = b l + b2

def finish(r : St r i ng) : St r i ng = r

overr ide def bufferEncoder : Encode r [BUF J = ? ? ?

overr ide def outputEncoder : Encode r [OUT] = ? ? ?

}.toColumn

keyValuesDS.groupByKey(pair => pair._1)

.agg(strConcat.as[String])

// Step 4 : Tell Spark which

// Encoders you need.

E m u l at i n g red u ceByKey w i t h a n Agg rega to r

Let's return to our example of trying to emulate reduceByKey on a specific data
set, and let's see if we can implement the aggregation part of our reduceByKey
operation with an Aggregator.

val keyValues =

List ((3, "Me"), (1, "Thi"), (2, "Se"), (3, "ssa"), (1, "sisA"), (3, "ge : "), (3, "-) "), (2, "ere"), (2, "t"))

val keyValuesDS = keyValues.toDS

val strConcat = new Aggregator[(Int, St r i ng) , St r i ng , St r i ng] {

def zero : St r i ng= " "

def reduce(b : St r i ng , a : (I nt , St r i ng)) : St r i ng = b + a._2

def merge(b l : St r i ng , b2 : St r i ng) : St r i ng = b l + b2

def finish(r : St r i ng) : St r i ng = r

overr ide def bufferEncoder : Encode r [St r i ng] = Encoders.STR I NG

overr ide def outputEncoder : Encode r [St r i ng] = Encoders.STR I NG

}.toColumn

keyValuesDS.groupByKey(pair => pair._1)

.agg(strConcat.as[String])

E m u l at i n g red u ceByKey w i t h a n Agg rega to r

Let's return to our example of trying to emulate reduceByKey on a specific data
set, and let's see if we can implement the aggregation part of our reduceByKey
operation with an Aggregator.

val keyValues =

List ((3, "Me"), (1, "Thi"), (2, "Se"), (3, "ssa"), (1, "sisA"), (3, "ge : "), (3, "-) "), (2, "ere"), (2, "t"))

val keyValuesDS = keyValues.toDS

val strConcat = new Aggregator[(Int, St r i ng) , St r i ng , St r i ng] {

def zero : St r i ng= " "

def reduce(b : St r i ng , a : (I nt , St r i ng)) : St r i ng = b + a._2

def merge(b l : St r i ng , b2 : St r i ng) : St r i ng = b l + b2

def finish(r : St r i ng) : St r i ng = r

overr ide def bufferEncoder : Encode r [St r i ng] = Encoders.STR I NG

overr ide def outputEncoder : Encode r [St r i ng] = Encoders.STR I NG

}.toColumn

keyValuesDS.groupByKey(pair => pair._1)

. agg (s t rCon ca t . a s [St r i ng]) . s how

I I + - - - - -+- - - - - - - - - - - - - - - - - - - -+

I I l value l anon$1(scala.Tuple2) 1

I I + - - - - -+- - - - - - - - - - - - - - - - - - - -+

I I 1 I ThisisA I

I I 3 1 Message : -) 1

I I 2 1 Secret I

I I +- - - - - + - +

Common Dataset Actions

collect() : Ar ray[T]

Returns an array that contains all of Rows in this Dataset.

count() : Long

Returns the number of rows in the Dataset.

fi rst() : T/head() : T

Returns the first row in this Dataset.

foreach (f: T => Unit) : Unit

Applies a function f to all rows.

reduce (f: (T , T) => T) : T

Reduces the elements of this Dataset using the specified binary function.

show () : Unit

Displays the top 20 rows of Dataset in a tabular form.

take (n: Int) : Ar ray[T]

Returns the first n rows in the Dataset.

When to use Datasets vs DataFrames vs R DDs?

U se Datasets when . . .

...- you have structured/ semi-structured data

.._. you want typesafety

...- you need to work with functional APls

...- you need good performance, but it doesn't have to be the best

U se Data Frames when . . .

.._. you have structured/semi-structured data

.._. you want the best possible performance, automatically optimized for you

U se R D Ds when . . .

...- you have unstructured data

.._. you need to fine-tune and manage low-level details of R O D computations

.._. you have complex data types that cannot be serialized with E ncoders

Limitations of Datasets

C ata lyst C a n ' t O pti m ize A l l O p erations

Ta ke f i l te r i n g a s a n exa m p l e .

Re l ation a l fi lte r o p e rat ion E . g . , d s . f i 1 te r ($" c i ty" . a s [S t r i ng] === " Bos ton ") .

Pe rform s best beca u se yo u ' re exp l i c i t ly te l I i n g S pa rk w h i c h co l u m n s/ att r i b utes a n d co n d i t i o n s

a re req u i red i n yo u r f i l te r ope rat i o n . Wit h i n form at io n a bout t h e st ruct u re of t h e d ata a n d t h e

st ru ctu re of co m p utat i o n s , S pa rk ' s opt i m ize r k n ows i t ca n access o n ly t h e f i e l ds i nvo lved i n t h e

f i l te r w i t h o ut h av i n g to i n sta nt i ate t h e e nt i re d ata type . Avo i d s d ata m ov i n g ove r t h e n etwork .

C ata lyst opti m izes th is case .

Fu nction a l fi lte r operation E . g . , ds . f i l te r (p => p . c i ty == " Bos to n ") .

S a m e fi l te r wr i tte n w it h a fu n ct i o n l i te ra l i s opaq ue to S pa rk - it ' s i m poss i b l e for S pa rk to

i n t rospect t h e l a m bd a fu n ct i o n . A l l S pa r k k n ows i s t h at yo u n eed a (wh o le) record m a rs h a l ed as

a Sca l a o bj ect i n ord e r to retu rn t ru e o r fa l se , req u i r i n g S pa rk to d o pore n t i a l l y a l ot m ore work

to m eet t h at i m p l i c i t req u i re m e nt .

C ata lyst ca n not o pt i m ize th is case .

Limitations of Datasets

Catalyst Can ' t Optimize All Operations

Takeaways:

..,. When using Datasets with higher-order functions like map, you miss
out on many Catalyst optimizations .

..,. When using Datasets with relational operations like select, you get

all of Catalyst 's optimizations .

..,. Though not all operations on Datasets benef it from Catalyst 's
optimizations, Tungsten is still always running under the hood of

Datasets, storing and organizing data in a highly optimized way,

which can result in large speedups over RDDs.

Limitations of Datasets

L imited Data Types

I f your data can 't be expressed by case classes/Products and standard
Spark SQ L data types, it may be diff icult to ensure that a Tungsten

encoder exists for your data type.

E.g. , you have an application which already uses some kind of complicated

regular Scala class.

Limitations of Datasets

L imited Data Types

I f your data can 't be expressed by case classes/Products and standard
Spark SQ L data types, it may be diff icult to ensure that a Tungsten

encoder exists for your data type.

E.g. , you have an application which already uses some kind of complicated

regular Scala class.

Requ i res Semi-Structu red/Structured Data

I f your unstructured data cannot be reformulated to adhere to some kind
of schema, it would be better to use RDDs.

