'

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

DataFrames (2)

Big Data Analysis with Scala and Spark
Heather Miller

DataFrames

So far, we got an intuition of what DataFrames are, how to create them,
and how to do many important transformations and aggregations on them.

DataFrames

So far, we got an intuition of what DataFrames are, how to create them,
and how to do many important transformations and aggregations on them.

In this session we'll focus on the DataFrames APIl. We'll dig into:

» working with missing values

» common actions on DataFrames
> joins on DataFrames

» optimizations on DataFrames

Cleaning Data with DataFrames

Sometimes you may have a data set with null or NaN values. In these
cases it's often desirable to do one of the following:

» drop rows/records with unwanted values like null or ”NaN”
» replace certain values with a constant

Cleaning Data with DataFrames

Sometimes you may have a data set with null or NaN values. In these
cases it's often desirable to do one of the following:

> drop rows/records with unwanted values like null or ”NaN”
» replace certain values with a constant

Dropping records with unwanted values: 1L L L

» drop() drops rows that contain null or NaN values in any column and

——
returns a new DataFrame. N

» drop(”all”) drops rows that contain null or NaN values in all columns LT
and returns a new DataFrame.

> drop(Array(”id”, ”name”)) drops rows that contain null or NaN values
in the specified columns and returns a new DataFrame.

Cleaning Data with DataFrames

Sometimes you may have a data set with null or NaN values. In these
cases it's often desirable to do one of the following:

> drop rows/records with unwanted values like null or ”NaN”
» replace certain values with a constant

Replacing unwanted values:

» fill(Q) replaces all occurrences of null or NaN in numeric columns
with specified value and returns a new DataFrame.

» fill(Map(”minBalance” -> 0)) replaces all occurrences of null or NaN

in specified column with specified value and returns a new
DataFrame.

» replace(Array(”id”),Map(1234 -> 8923)) replaces specified value

(1234) in specified column (id) with specified replacement value
(8923) and returns a new DataFrame.

Common Actions on DataFrames

Like RDDs, DataFrames also have their own set of actions.
We've even used one several times already.

Common Actions on DataFrames

Like RDDs, DataFrames also have their own set of actions.
We've even used one several times already.

collect(): Array[Row]
Returns an array that contains all of Rows in this DataFrame.

count(): Long

Returns the number of rows in the DataFrame.
- =

first(): Row/head(): Row
Returns the first row in the DataFrame.

(show(): Unit

Displays the top 20 rows of DataFrame in a tabular form.

take(n: Int): Array[Row]
Returns the first n rows in the DataFrame.

Joins on DataFrames

Joins on DataFrames are similar to those on Pair RDDs, with the one major

usage difference that, since DataFrames aren't key/value pairs, we have to specify
which columns we should join on.

Several types of joins are available:
inner, outer, left_outer, right_outer, leftsemi.

Joins on DataFrames

Joins on DataFrames are similar to those on Pair RDDs, with the one major

usage difference that, since DataFrames aren't key/value pairs, we have to specify
which columns we should join on.

Several types of joins are available:
inner, outer, left_outer, right_outer, leftsemi.

Performing joins:

Given two DataFrames, df1 and df2 each with a column/attribute called id, we
can perform an inner join as follows:

df1.join(df2, $’df1.id” === $”df}..id”)

It's possible to change the join type by passing an additional string parameter to
join specifying which type of join to perform. E.g.,

df1.join(df2, $7df1.1id” === $”dfd.1id”, ”right_outer”)

Joins on DataFrames: A Familiar Example

Example:

Recall our CFF data set from earlier in the course. Let's adapt it to the
DataFrame API.

Joins on DataFrames: A Familiar Example

Example:

Recall our CFF data set from earlier in the course. Let's adapt it to the
DataFrame API.

case class Abo(id: Int, v: (String, String))
case class Loc(id: Int, v: String)

val as = List(Abo(101, (”Ruetli”, ”AG”)), Abo(102, (”Brelaz”, ”DemiTarif”)),
Abo (103, (”Gress”, ”DemiTarifVisa”)), Abo(104, (”Schatten”, "DemiTarif”)))
val abosDF = sc.parallelize(as).toDF

val 1s = List(Loc(101, ”"Bern”), Loc(101, ”Thun”), Loc(102, ”Lausanne”), Loc(102, ”Geneve”),
Loc(102, ”Nyon”), Loc(103, ”Zurich”), Loc(10@3, ”"St-Gallen”), Loc(103, "Chur”))

val locationsDF = sc.parallelize(ls).toDF

Joins on DataFrames: A Familiar Example

Example:
Recall our CFF data set from earlier in the course. Let's adapt it to the

DataFrame API.

// abosDF: locationsDF:

// +——+———————— - + -t +
// | 1id] V| | id| V|
// +——+————"—————— + -t ———————— +
// 101 [Ruetli, AG] 101 Bern

// |102| [Brelaz,DemiTarif] 101 Thun

// |103|[Gress,DemiTarifV... 102| Lausanne

// |104|[Schatten,DemiTarif] 102 Geneve

[/ +———F———— + 102 Nyon

// 103 Zurich

// 103|St-Gallen

// 103 Chur

Joins on DataFrames: A Familiar Example

Example:
Recall our CFF data set from earlier in the course.

How do we combine only customers that have a subscription and
where there is location info?

Joins on DataFrames: A Familiar Example

Example:
Recall our CFF data set from earlier in the course.

How do we combine only customers that have a subscription and
where there is location info?

We perform an inner join, of course.

val abosDF = sc.parallelize(as).toDF
val locationsDF = sc.parallelize(ls).toDF

val trackedCustomersDF =
abosDF . join(locationsDF, abosDF(”1d”) === locationsDF(”1d”))

Joins on DataFrames: A Familiar Example

Example:
How do we combine only customers that have a subscription and where
there is location info?

val trackedCustomersDF =
abosDF . join(locationsDF, abosDF(”1d”) === locationsDF(”1d”))

// trackedCustomersDF:

// t———F——— -t —————— +
// | 1d]| v| id]| V|
// +——+—————————— - e +
// 101 [Ruetli,AG]]|101 Bern
// 101 [Ruetli,AG]|101 Thun

// |103|[Gress,DemiTarifV...|103 Zurich
// |103|[Gress,DemiTarifV...|103|St-Gallen
// |103|[Gress,DemiTarifV...|103 Chur
// 102 Brelaz,DemiTarif]|102| Lausanne
// 102 Brelaz,DemiTarif]|102 Geneve

// 1102 Brelaz,DemiTarif]|102 Nyon
// t———F——— -t —————— +

Joins on DataFrames: A Familiar Example

Example:
How do we combine only customers that have a subscription and where
there is location info?

val trackedCustomersDF =
abosDF . join(locationsDF, abosDF(”1d”) === locationsDF(”1d”))

// trackedCustomersDF:

// t———F——— -t —————— +
// | 1d]| v| id]| V|
// +——+—————————— - e +
// 101 [Ruetli,AG]]|101 Bern
// 101 [Ruetli,AG]|101 Thun

// |103|[Gress,DemiTarifV...|103 Zurich
// |103|[Gress,DemiTarifV...|103|St-Gallen
// |103|[Gress,DemiTarifV...|103 Chur
// 102 Brelaz,DemiTarif]|102| Lausanne
// 102 Brelaz,DemiTarif]|102 Geneve

// 1102 Brelaz,DemiTarif]|102 Nyon
// t———F——— -t —————— +

As expected, customer 104 is missing! :-)

Joins on DataFrames: A Familiar Example
yv ¥ ¢

Example: Let's assume the CFF wants to know for which subscribers the CFF has
managed to collect location information. E.g., it's possible that someone has a
demi-tarif, but doesn’'t use the CFF app and only pays cash for tickets.

Which join do we use?

Joins on DataFrames: A Familiar Example

Example: Let's assume the CFF wants to know for which subscribers the CFF has
managed to collect location information. E.g., it's possible that someone has a
demi-tarif, but doesn’'t use the CFF app and only pays cash for tickets.

val abosWithOptionallLocationsDF

= abosDF. join(locationsDF, abosDF(”1d”) === locationsDF(”1d”), ”left_outer”)

/27 2 o + ‘
// | id| vl id| V|

// e et t————t———————— +

// 101 [Ruetli,AG]| 101 Bern

// 101 [Ruetli,AG]| 101 Thun

// 103 | [Gress,DemiTarifV...| 103 Zurich

// 103 | [Gress,DemiTarifV...| 103|St-Gallen

// 103 | [Gress,DemiTarifV...| 103 Chur

// 102 [Brelaz,DemiTarif]| 102| Lausanne
// 102 [Brelaz,DemiTarif]| 102 Geneve
// 102 [Brelaz,DemiTarif]| 102 Nyon

// 104 | [Schatten,DemiTarif]|null null
// et t—— +

Joins on DataFrames: A Familiar Example

Example: Let's assume the CFF wants to know for which subscribers the CFF has
managed to collect location information. E.g., it's possible that someone has a
demi-tarif, but doesn’'t use the CFF app and only pays cash for tickets.

val abosWithOptionallLocationsDF

= abosDF. join(locationsDF, abosDF(”1d”) === locationsDF(”1d”), ”left_outer”)
// -t -t +
// | id| vl id]| V|
// e et t————t———————— +
// 101 [Ruetli,AG]| 101 Bern
// 101 [Ruetli,AG]| 101 Thun
// 103 | [Gress,DemiTarifV...| 103 Zurich
// 103 | [Gress,DemiTarifV...| 103|St-Gallen
// 103 | [Gress,DemiTarifV...| 103 Chur

// 102 [Brelaz,DemiTarif]| 102| Lausanne
// 102 [Brelaz,DemiTarif]| 102 Geneve

// 102 [Brelaz,DemiTarif]| 102 Nyon
// 104 | [Schatten,DemiTarif]|null null
// et t—— +

As expected, customer 104 has returned! :-)

Revisiting Our Selecting Scholarship Recipients Example

Now that we're familiar with the DataFrames API, let’s revisit the example that we
looked at at a few sessions back.

Revisiting Our Selecting Scholarship Recipients Example

Now that we're familiar with the DataFrames API, let’s revisit the example that we
looked at at a few sessions back.

Recall Let's imagine that we are an organization, CodeAward, offering scholarships to
programmers who have overcome adversity. Let's say we have the following two
datasets.

case class Demographic(id: Int,
age: Int,
codingBootcamp: Boolean,
country: String,
gender: String,
isEthnicMinority: Boolean,
servedInMilitary: Boolean)
val demographicsDF = sc.textfile(...).toDF // DataFrame of Demographic

case class Finances(id: Int,
hasDebt: Boolean,
hasFinancialDependents: Boolean,
hasStudentLoans: Boolean,
income: Int)
val financesDF = sc.textfile(...).toDF // DataFrame of Finances

Revisiting Our Selecting Scholarship Recipients Example

Our data sets include students from many countries, with many life and
financial backgrounds. Now, let's imagine that our goal is to tally up and
select students for a specitic scholarship.

Revisiting Our Selecting Scholarship Recipients Example

Our data sets include students from many countries, with many life and
financial backgrounds. Now, let's imagine that our goal is to tally up and
select students for a specitic scholarship.

As an example, Let's count:

» Swiss students
» who have debt & financial dependents

How might we implement this program with the DataFrame API?

// Remember, DataFrames available to us:
val demographicsDF = sc.textfile(...).toDF // DataFrame of Demographic

val financesDF = sc.textfile(...).toDF // DataFrame of Finances

Revisiting Our Selecting Scholarship Recipients Example

With DataFrames:

demographicsDF. join(financesDF, demographicsDF(”ID”) === financesDF(”ID”), ”inner”)
.filter($”HasDebt” && $”HasFinancialDependents”)
filter($”CountryLive” === ”Switzerland”)

.count

Revisiting Our Selecting Scholarship Recipients Example

Recall 5

While for all three of these possible
examples, the end result is the same, the
time 1t takes to execute the job Is vastly
different.

3.75 -

%
O
-
S 25 o :
Possibility 1 Possibility 2 g Filtering data first
i I
val fsi = fs.filter(IS 3'6X faSter'
> bs.join(fs) ds.filter(p => p._2.
filter(p => p._2._ .join(fsi) 1.25
.count .count
» (1) Spark Jobs » (1) Spark Jobs
res@: Long = 10 fsi: org.apache.spark. 0

res4: Long = 10

Revisiting Our Selecting Scholarship Recipients Example

Recall

While for all three of these possible
examples, the end result is the same, the
time 1t takes to execute the job Is vastly
different.

Seconds
on
O

(—\
177x slower!

“4 mins to
complete, versus

1.35 and 4.97
seconds

Revisiting Our Selecting Scholarship Recipients Example

300
Comparing performance between
handwritten RDD-based solutions and
DataFrame solution...) —
<_\
G
- I
S0 193x slower!
O than DataFrame
) .
solution!
75

Revisiting Our Selecting Scholarship Recipients Example

Comparing performance between
handwritten RDD-based solutions and
DataFrame solution...

Possibility 1

> bs.join(fs)

filter(p => p._2.._

.count

» (1) Spark Jobs
res@: Long = 10

command Took 4.97

SECO

nags =

Possibility 2 DataFrame

val fsi = fs.filter(> demographics.join(fi

ds.filter(p => p._2. .filter(
.join(fsi) filter(
.count .count

» (1) Spark Jobs
» (2) Spark Jobs
fsi: org.apache.spark. ~J A

es24: Long = 10
res4: Long = 10

Command took 1.24 seconds -
Command took 1.35 seconds

7 TTN

3.75 -

25 -

Seconds

1.25

4x faster!

than almost
same program

written for
RDDs

Optimizations

How is this possible?

Optimizations

How is this possible?

Recall that Spark SQL comes with two specialized backend components:

» Catalyst, query optimizer.
» Tungsten, off-heap serializer.

Let's briefly develop some intuition about why structured data and
computations enable these two backend components to do so many

optimizations for you.

Optimizations

Catalyst
Spark SQL’s query optimizer.

Recall our earlier map of how Spark SQL relates to the rest of Spark:

User Programs

Optimizations

Catalyst
Spark SQL’s query optimizer.

Recall our earlier map of how Spark SQL relates to the rest of Spark:

User Programs

Key thing to remember:
Catalyst compiles Spark SQL programs down to an RDD.

Optimizations: RDDs vs DataFrames

In summary:
Spark RDDs: ke
. : . : C ° Not much structure.
. . ’ Q Difficult to
@ @ @ ® @ ™ pe

aggressively optimize.

DataFrames/Databases/Hive: “

balance: Double : Boolean SELECT

WHERE

ORDER BY
balance: Double : Boolean GROUP BY

balance: Double : Boolean COUNT

Lots of structure.

balance: Double : Boolean

Lots of optimization
opportunities!

Optimizations

Catalyst
Spark SQL’s query optimizer.

Assuming Catalyst..

» has full knowledge and understanding of all data types
» knows the exact schema of our data
» has detailed knowledge of the computations we'd like to do

Optimizations

Catalyst
Spark SQL’s query optimizer.

Assuming Catalyst...
» has full knowledge and understanding of all data types
» knows the exact schema of our data
» has detailed knowledge of the computations we'd like to do

Makes it possible for us to do optimizations like:

» Reordering operations.
[aziness + structure gives us the ability to analyze and rearrange
DAG of computation/the logical operations the user would like to do,
before they re executed.

E.g., Catalyst can decide to rearrange and fuse together filter operations, pushing
all filters early as possible, so expensive operations later are done on less data.

Optimizations

Catalyst
Spark SQL’s query optimizer.

Assuming Catalyst...
» has full knowledge and understanding of all data types

» knows the exact schema of our data
» has detailed knowledge of the computations we'd like to do

Makes it possible for us to do optimizations like:
» Reordering operations.
» Reduce the amount of data we must read.
Skip reading in, serializing, and sending around parts of the data set
that aren’t needed for our computation.

E.g., Imagine a Scala object containing many fields unnecessary to our
computation. Catalyst can narrow down and select, serialize, and send around
only relevant columns of our data set.

Optimizations

Catalyst
Spark SQL’s query optimizer.

Assuming Catalyst..

» has full knowledge and understanding of all data types
» knows the exact schema of our data
» has detailed knowledge of the computations we'd like to do

Makes it possible for us to do optimizations like:

» Reordering operations.
» Reduce the amount of data we must read.

> Pruning unneeded partitioning.
Analyze DataFrame and filter operations to figure out and skip
partitions that are unneeded in our computation.

Optimizations

Tungsten
Spark SQL’s off-heap data encoder.

Since our data types are restricted to Spark SQL data types, Tungsten can
provide:

» highly-specialized data encoders
» column-based

» off-heap (free from garbage collection overhead!)

Optimizations

Tungsten
Spark SQL's off-heap data encoder.

Since our data types are restricted to Spark SQL data types, Tungsten can
provide:

» highly-specialized data encoders
» column-based
» off-heap (free from garbage collection overhead!)

Highly-specialized data encoders.

Tungsten can take schema information and tightly pack serialized data into
memory. This means more data can fit in memory, and faster
serialization /deserialization (CPU bound task)

Optimizations

Tungsten
Spark SQL’s off~heap data encoder.

Since our data types are restricted to Spark SQL data types, Tungsten can
provide:

» highly-specialized data encoders
» column-based
» off-heap (free from garbage collection overhead!)

Column-based

Based on the observation that most operations done on tables tend to be focused
on specific columns/attributes of the data set. Thus, when storing data, group
data by column instead of row for faster lookups of data associated with specific
attributes/columns.

Well-known to be more efficient across DBMS.

Optimizations

Tungsten
Spark SQL's off-heap data encoder.

Since our data types are restricted to Spark SQL data types, Tungsten can
provide:

» highly-specialized data encoders
» column-based

» off-heap (free from garbage collection overhead!)

Off-heap

Regions of memory off the heap, manually managed by Tungsten, so as to avoid
garbage collection overhead and pauses.

Optimizations

Taken together, Catalyst and Tungsten offer ways to significantly speed up
your code, even if you write it inefficiently initially.

Limitations of DataFrames

Limitations of DataFrames

Untyped!

listingsDF.filter($”state” === ”CA”)

// org.apache.spark.sqgl.AnalysisException:
//cannot resolve ’‘state‘’ given input columns: [street, zip, price];;

Your code compiles, but you get runtime exceptions when you attempt to run a
query on a column that doesn't exist.

Would be nice if this was caught at compile time like we're used to in Scala!

Limitations of DataFrames

Limited Data Types

If your data can’'t be expressed by case classes/Products and standard
Spark SQL data types, it may be difficult to ensure that a Tungsten

encoder exists for your data type.

E.g., you have an application which already uses some kind of complicated

regular Scala class.

Limitations of DataFrames

Limited Data Types

If your data can’'t be expressed by case classes/Products and standard
Spark SQL data types, it may be difficult to ensure that a Tungsten
encoder exists for your data type.

E.g., you have an application which already uses some kind of complicated
regular Scala class.

Requires Semi-Structured/Structured Data

If your unstructured data cannot be reformulated to adhere to some kind
of schema, it would be better to use RDDs.

