
)

;

ECOLE POLYTECHNIQlJE
FEDERALE DE LAUSANNE

Data Frames

So far, we got an intuition of what DataFrames are, and we learned how to

create them. We also saw that if we have a DataFrame, we use SQL syntax

and do SQL queries on them.

DataFrames have their own APls as well!

Data Frames

So far, we got an intuition of what DataFrames are, and we learned how to

create them. We also saw that if we have a DataFrame, we use SQL syntax

and do SQL queries on them.

DataFrames have their own APls as well!

In this session we'll focus on the DataFrames API. We'll dig into:

...- available DataFrame data types

...- some basic operations on Data Frames

...- aggregations on Data Frames

DataFrames: In a Nutshell

DataFrames are ...

A relational API over Spark's RDDs

Because sometimes it is more convenient to use declarative relational AP/s

than functional APls for analysis jobs.

DataFrames: In a Nutshell

DataFrames are ...

A relational API over Spark's RDDs

Because sometimes it is more convenient to use declarative relational AP/s

than functional AP/s for analysis jobs.

Able to be automatically aggressively optimized

Spark SQL applies years of research on relational optimizations in the

databases community to Spark.

DataFrames: In a Nutshell

DataFrames are ...

A relational API over Spark's RDDs

Because sometimes it is more convenient to use declarative relational AP/s

than functional AP/s for analysis jobs.

Able to be automatically aggressively optimized

Spark SQL applies years of research on relational optimizations in the

databases community to Spark.

Untyped!

The elements within DataFrames are Rows, which are not parameterized by

a type. Therefore, the Scala compiler cannot type check Spark SQL

schemas in DataFrames.

DataFrames Data Types

To enable optimization opportunities, Spark SQL's DataFrames operate on

a restricted set of data types.

DataFrames Data Types

To enable optimization opportunities, Spark SQL's DataFrames operate on

a restricted set of data types.

Basic Spark SQL Data Types:

Scala Type SQL Type Details

Byte
Short
Int
Long
java.math.BigDecimal
Float
Double
Array[Byte]
Boolean
Boolean
java.sql.Timestamp
java.sql.Date
String

ByteType
Short Type
IntegerType
LongType
Decimal Type
Float Type
Double Type
BinaryType
Boolean Type
Boolean Type
Times tamp Type
DateType
StringType

1 byte signed integers (-128,127)
2 byte signed integers (-32768,32767)
4 byte signed integers (-2147483648,2147483647)
8 byte signed integers
Arbitrary precision signed decimals
4 byte floating point number
8 byte floating point number
Byte sequence values
true/false
true/false
Date containing year, month, day, hour, minute, and second.
Date containing year, month, day.
Character string values (stored as UTF8)

DataFrames Data Types

To enable optimization opportunities, Spark SQL's DataFrames operate on

a restricted set of data types.

Complex Spark SQL Data Types:

Scala Type SQL Type

Array[TJ

Map[K, VJ

case class

ArrayType(elementType, containsNull)

MapType(keyType, valueType, valueContainsNull)

StructType(List[StructFields])

DataFrames Data Types

To enable optimization opportunities, Spark SQL's DataFrames operate on

a restricted set of data types.

Complex Spark SQL Data Types:

Scala Type SQL Type

Array[TJ

Map[K, VJ

case class

Arrays

ArrayType(elementType, containsNull)

MapType(keyType, valueType, valueContainsNull)

StructType(List[StructFields])

Array of only one type of element (elementType}. containsNull is set to true if the
elements in ArrayType value can have null values.

Example:
II Scala type

Array[String]

II SQL type

ArrayType(StringType, true)

DataFrames Data Types

To enable optimization opportunities, Spark SQL's DataFrames operate on

a restricted set of data types.

Complex Spark SQL Data Types:

Scala Type SQL Type

Array[TJ

Map[K, VJ

case class

Maps

ArrayType(elementType, containsNull)

MapType(keyType, valueType, valueContainsNull)

StructType(List[StructFields])

Map of key /value pairs with two types of elements. valuecontainsNull is set to true if
the elements in MapType value can have null values.

Example:
II Scala type II SQL type

Map[Int,String] MapType(IntegerType, StringType, true)

DataFrames Data Types

To enable optimization opportunities, Spark SQL's DataFrames operate on

a restricted set of data types.

Complex Spark SQL Data Types:

Scala Type SQL Type

Array[TJ

Map[K, VJ

case class

Structs

ArrayType(elementType, containsNull)

MapType(keyType, valueType, valueContainsNull)

StructType(List[StructFields])

Struct type with list of possible fields of different types. containsNull is set to true if the
elements in StructFields can have null values.

Example:
// Scala type
case class Person(name: String, age: Int)

// SQL type
StructType(List(StructField("name", StringType, true),

StructField("age", IntegerType, true)))

Complex Data Types Can Be Combined�

It's possible to arbitrarily nest complex data types! For example:

// Scala type
case class Account(

balance: Double,

employees:
Array[Employee])

case class Employee(
id: Int,

name: String,

jobTitle: String)

case class Project(
title: String,

team: Array[Employee],

acct: Account)

// SQL type

StructType(

StructField(title,StringType,true),

StructField(

team,

ArrayType(

StructType(StructField(id,IntegerType,true),

StructField(name,StringType,true),

StructField(jobTitle,StringType,true)),

true),

true),

StructField(

)

acct,

StructType(

StructField(balance,DoubleType,true),

StructField(

employees,

ArrayType(

StructType(StructField(id,IntegerType,true),

StructField(name,StringType,true),

StructField(jobTitle,StringType,true)),

true),

true)

) '

true)

Accessing Spark SQL Types

Important.

In order to access any of these data types, either basic or complex, you
must first import Spark SQL types!

import org.apache.spark.sql.types._

Data Frames Operations Are More Structured�

When introduced, the DataFrames API introduced a number of

relational operations.

The main difference between the ROD AP/ and the DataFrames AP/ was that

DataFrame AP/s accept Spark SQL expressions, instead of arbitrary user-defined

function literals like we were used to on RDDs. This allows the optimizer to

understand what the computation represents, and for example with filter, it can

often be used to skip reading unnecessary records.

DataFrames API: Similar-looking to SQL. Example methods include:

� select
� where
� limit
� orderBy
� groupBy
� join

Getting a look at your data

Before we get into transformations and actions on DataFrames, let's first

look at the ways we can have a look at our data set.

show() pretty-prints DataFrame in tabular form. Shows first 20 elements.

Getting a look at your data

Before we get into transformations and actions on DataFrames, let's first

look at the ways we can have a look at our data set.

show() pretty-prints DataFrame in tabular form. Shows first 20 elements.

Example:

case class Employee(id: Int, fname: String, lname: String, age: Int, city: String)

val employeeDF = sc.parallelize(...).toDF
employeeDF.show()

II+---+-----+-------+---+--------+

II I idlfnamel lnamelagel cityl
II+---+-----+-------+---+--------+

II I 121 Joel Smithl 38INew Yorkl
II l563ISallyl Owensl 481New Yorkl
II l645ISlatelMarkhaml 281 Sydneyl
II 1221 I David I Walker I 21 I Sydney I
II+---+-----+-------+---+--------+

Getting a look at your data

Before we get into transformations and actions on DataFrames, let's first

look at the ways we can have a look at our data set.

printSchema() prints the schema of your DataFrame in a tree format.

Getting a look at your data

Before we get into transformations and actions on DataFrames, let's first

look at the ways we can have a look at our data set.

printSchema() prints the schema of your DataFrame in a tree format.

Example:

case class Employee(id: Int, fname: String, lname: String, age: Int, city: String)

val employeeDF = sc.parallelize(...).toDF
employeeDF.printschema()

II root
II 1-- id: integer (nullable = true)
II 1-- fname: string (nullable = true)
II 1-- lname: string (nullable = true)
II 1-- age: integer (nullable = true)
II 1-- city: string (nullable = true)

Common DataFrame Transformations

Like on RDDs, transformations on DataFrames are (1) operations which return a
DataFrame as a result, and (2) are lazily evaluated.

Common DataFrame Transformations

Like on RDDs, transformations on DataFrames are (1) operations which return a
DataFrame as a result, and (2) are lazily evaluated.

Some common transformations include:

def select(col: String, cols: String*): DataFrame
II selects a set of named columns and returns a new DataFrame with these
II columns as a result.

def agg(expr: Column, exprs: Column*): DataFrame
II performs aggregations on a series of columns and returns a new DataFrame
II with the calculated output.

def groupBy(col1: String, cols: String*): �taFrame II simplified

,-
-

I

II groups the DataFrame using the specified columns. Intended to be used before an aggregation.

def join(right: DataFrame): QataFram� II simplified
II inner join with another DataFrame

Common DataFrame Transformations

Like on RDDs, transformations on DataFrames are (1) operations which return a
DataFrame as a result, and (2) are lazily evaluated.

Some common transformations include:

def select(col: String, cols: String*): DataFrame
II selects a set of named columns and returns a new DataFrame with these
II columns as a result.

def agg(expr: Column, exprs: Column*): DataFrame
II performs aggregations on a series of columns and returns a new DataFrame
II with the calculated output.

def groupBy(col1: String, cols: String*): DataFrame II simplified
II groups the DataFrame using the specified columns. Intended to be used before an aggregation.

def join(right: DataFrame): DataFrame II simplified
II inner join with another DataFrame

Other transformations include: f i 1 ter, 1 imi t, orde rBy, where, as, sort, union, drop,

amongst others.

Specifying Columns

As you might have observed from the previous slide, most methods take a
parameter of type Column or String, always referring to some attribute/column in
the data set.

Most methods on DataFrames tend to some well-understood, pre-defined
operation on a column of the data set

You can select and work with columns in three ways:

1. Using $-notation

// $-notation requires: import spark.implicits._

df.filter($''age'' > 18)

2. Referring to the Dataframe

df. fil ter(df ("age")> 18))

3. Using SQL query string

df. fil ter(''age > 18'')

DataFrame Transformations: Example

Example:

Recall the example SQL query that we did in the previous session on a
data set of employees. Rather than using SQL syntax, let's convert our
example to use the DataFrame API.

case class Employee(id: Int, fname: String, lname: String, age: Int, city: String)

val employeeDF = sc.parallelize(...).toDF

We'd like to obtain just the IDs and last names of employees working in a
specific city, say, .?ydney, Australia. Let's sort our result in order of
increasing employee ID.

How could we solve this with the DataFrame API?

DataFrame Transformations: Example

Example:
We'd like to obtain just the IDs and last names of employees working in a specific city,
say, Sydney, Australia. Let's sort in order of increasing employee ID.

case class Employee(id: Int, fname: String, lname: String, age: Int, city: String)

val employeeDF = sc.parallelize(...).toDF

val sydneyEmployeesDF = employeeDF.select("id", "lname")
.where("city == 'Sydney'")
.orderBy("id")

DataFrame Transformations: Example

Example:
We'd like to obtain just the IDs and last names of employees working in a specific city,
say, Sydney, Australia. Let's sort in order of increasing employee ID.

case class Employee(id: Int, fname: String, lname: String, age: Int, city: String)

val employeeDF = sc.parallelize(...).toDF

val sydneyEmployeesDF = employeeDF.select("id", "lname")
.where("city == 'Sydney'")
.orderBy("id")

II employeeDF:
II+---+-----+-------+---+--------+

II I idlfnamel lnamelagel cityl
II+---+-----+-------+---+--------+

II I 121 Joel Smithl 381New Yorkl
II l563ISallyl Owensl 481New Yorkl
II l645ISlatelMarkhaml 281 Sydneyl
II 1221 I David I Walker I 21 I Sydney I
II+---+-----+-------+---+--------+

DataFrame Transformations: Example

Example:
We'd like to obtain just the IDs and last names of employees working in a specific city,
say, Sydney, Australia. Let's sort in order of increasing employee ID.

case class Employee(id: Int, fname: String, lname: String, age: Int, city: String)

val employeeDF = sc.parallelize(...).toDF

val sydneyEmployeesDF = employeeDF.select("id", "lname")
.where("city == 'Sydney'")
.orderBy("id")

II employeeDF:
II+---+-----+-------+---+--------+

II I idlfnamel lnamelagel city I
II+---+-----+-------+---+--------+

II I 121 Joel Smithl 381New Yorkl
II l563ISallyl Owensl 481New Yorkl
II l645ISlatelMarkhaml 281 Sydneyl
II 1221 I David I Walker I 21 I Sydney I
II+---+-----+-------+---+--------+

sydneyEmployeesDF:
+---+-------+
I idl lnamel
+---+-------+

1221 I Walker I
l6451Markhaml
+---+-------+

Filtering in Spark SQL

The DataFrame API makes two methods available for filtering:
filter and where (from SQL). They are equivalent!

val over30 = employeeDF.filter("age > 30").show()

II+---+-----+-----+---+--------+

II I idlfnamellnamelagel cityl

II+---+-----+-----+---+--------+

II I 121 JoelSmithl 381New Yorkl

II l563ISallylOwensl 481New Yorkl

II+---+-----+-----+---+--------+

val over30 = employeeDF.where("age > 30").show()

II+---+-----+-----+---+--------+

II I idlfnamellnamelagel city I

II+---+-----+-----+---+--------+

II I 121 JoelSmithl 381New Yorkl

II l563ISallylOwensl 481New Yorkl

II+---+-----+-----+---+--------+

Filtering in Spark SQL

The DataFrame API makes two methods available for filtering:
filter and where (from SQL). They are equivalent!

val over30 = employeeDF.filter("age > 30").show()

II+---+-----+-----+---+--------+

II I idlfnamellnamelagel cityl

II+---+-----+-----+---+--------+

II I 121 JoelSmithl 381New Yorkl

II l563ISallylOwensl 481New Yorkl

II+---+-----+-----+---+--------+

Filters can be more complex too:

val over30 = employeeDF.where("age > 30").show()

II+---+-----+-----+---+--------+

II I idlfnamellnamelagel cityl

II+---+-----+-----+---+--------+

II I 121 JoelSmithl 381New Yorkl

II l563ISallylOwensl 481New Yorkl

II+---+-----+-----+---+--------+

We can compare results between attributes/columns. Though can be more difficult to optimize.

employeeDF.filter(($"age" > 25) && ($"city" === "Sydney")).show()
II+---+-----+-------+---+------+

II I idlfnamel lnamelagel cityl
II+---+-----+-------+---+------+

II l645ISlatelMarkhaml 28ISydneyl
II+---+-----+-------+---+------+

Grouping and Aggregating on DataFrames

One of the most common tasks on tables is to (1) group data by a certain
attribute, and then (2) do some kind of aggregation on it like a count.

Grou ping and Aggregating on DataFrames

One of the most common tasks on tables is to (1) group data by a certain
attribute, and then (2) do some kind of aggregation on it like a count.

For grouping & aggregating , Spark SQ L provides:

..._ a g rou pBy function which returns a Re l a t i ona lG roupedDa tase t

..._ which has several standard aggregation functions def ined on it like cou n t ,

s um , max , m i n , and avg .

Grouping and Aggregating on DataFrames

One of the most common tasks on tables is to (1) group data by a certain
attribute, and then (2) do some kind of aggregation on it like a count.

For grouping & aggregating , Spark SQ L provides:

..._ a g roupBy function which returns a Re l a t i ona lG roupedDa taset

..._ which has several standard aggregation functions def ined on it like cou n t,
s um, max, m i n, and avg.

How to group and aggregate?

..._ Just ca 1 1 g roupBy on specif i c attribute/ column (s) of a Da ta F rame,

..._ followed by a call to a method on Re l a t i ona lG roupedDa taset like cou n t, max,
or agg (for agg, also specify which attribute/column(s) subsequent
spa rk . sq l . fu nct i ons like cou n t, s um, max, etc, should be called upon.)

df . g rou pBy ($ '' a t t r i bu te 1 ' ')

. agg (s um ($ '' a t t r i bu te 2 ''))

df . g rou pBy ($ '' a t t r i bu te 1 ' ')

. count ($ '' a t t r i bu te 2 '')

Grouping and Aggregating on DataFrames : Example

Example:

Let's assume that we have a dataset of homes currently for sale in an
entire U S state. Let's calculate the most expensive, and least expensive
homes for sale per zip code.

case class Listing(street: String, zip: Int, price: Int)

val listingsDF = ... // DataFrame of Listings

How could we do this with DataFrames?

Grouping and Aggregating on DataFrames : Example

Example:

Let's assume that we have a dataset of homes currently for sale in an
entire U S state. Let's calculate the most expensive, and least expensive
homes for sale per zip code.

case class Listing(street: String, zip: Int, price: Int)

val listingsDF = . . . / / DataFrame of Listings

import org.apache.spark.sql.functions._

val mostExpensiveDF = listingsDF.groupBy($"zip")
.max("price")

val leastExpensiveDF = listingsDF.groupBy($"zip")
.min("price")

G rou p i ng a n d Aggregat i ng o n Data F ra mes : H a rd e r Exa m p l e

Exam ple :

Let ' s assume we have the following data set representing all of the posts in a
busy open source community ' s Discourse forum.

case class Post(authorID: Int, subforum: String, likes: Int, date: String)

val postsDF = ... // DataFrame of Posts

Let ' s say we would like to tally up each authors ' posts per subforum, and then
rank the authors with the most posts per subforum.

H ow cou ld we do th is with Data Frames?

G rou p i ng a n d Aggregat i ng o n Data F ra mes : H a rd e r Exa m p l e

Exam ple :

Let ' s assume we have the following data set representing all of the posts in a
busy open source community ' s Discourse forum.

case class Post(authorID: Int, subforum: String, likes: Int, date: String)

val postsDF = ... // DataFrame of Posts

Let ' s say we would like to tally up each authors ' posts per subforum, and then
rank the authors with the most posts per subforum.

import org.apache.spark.sql.functions._

val rankedDF =
postsDF.groupBy($"authorID", $"subforum")

.agg(count($"authorID")) // new DF with columns authorID, subforum, count(authorID)

.orderBy($"subforum", $"count(authorID)".desc)
�

Grouping and Aggregating on DataFrames : Harder Example

Exam ple : Let 's say we would like to tally up each authors ' posts per subforum,
and then rank the authors with the most posts per subforums.

val rankedDF = postsDF.groupBy($"authorID", $"subforum")
.agg(count($"authorID"))
.orderBy($"subforum", $"count(authorID)".desc)

II postsDF:
II +- - - - - - - -+- - - - - - - -+- - - - -+- - - -+

II lauthorIDlsubforumllikesldatel
II +- - - - - - - -+- - - - - - - -+- - - - -+- - - -+

II 1 I design I 21
II 1 I debate I 01
II 21 debate I 01
II 31 debate I 231
II 1 I design I 1 I
II 1 I design I 01
II 21 design I 01
II 21 debate I 01
II +- - - - - - - -+- - - - - - - -+- - - - -+- - - -+

rankedDF:
+--------+--------+---------------+

lauthorIDlsubforumlcount(authorID)I
+--------+--------+---------------+

l2 1 debatej) 21
1 I debate I
3 deba
1 I design I
21 designl

1 I
1 I
31
1 I

+--------+--------+---------------+

•

Grouping and Aggregating on DataFrames

A{ Prfl
After ca l l i ng groupBy , methods on Relat ionalG roupedDataset :

To see a l i st of a l l o p e ra t i o n s yo u

ca n ca l l fo l l ow i n g a g ro u pBy , see t h e A P I d o cs fo r Re l a t i o n a l G rou ped Da t a s e t .
http : //spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.RelationalGroupedDataset

re- Afr
Methods with in agg :

Exa m p l es i n c l u d e: m i n , ma x , s um , mea n , s t ddev , co u n t , a vg , f i rs t , l a s t . To

see a l i st of a l l o p e ra t i o n s yo u ca n ca l l w it h i n a n a gg , see t h e A P I d o cs fo r
o rg . a pa c h e . s pa r k . s q l . fu n c t i o n s .
http : //spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sgl.functions!

