
) 

; 

ECOLE POLYTECHNIQlJE 
FEDERALE DE LAUSANNE 
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Data Frames 

So far, we got an intuition of what DataFrames are, and we learned how to 

create them. We also saw that if we have a DataFrame, we use SQL syntax 

and do SQL queries on them. 

DataFrames have their own APls as well! 

In this session we'll focus on the DataFrames API. We'll dig into: 

...- available DataFrame data types 

...- some basic operations on Data Frames 

...- aggregations on Data Frames 



DataFrames: In a Nutshell 

DataFrames are ... 

A relational API over Spark's RDDs 

Because sometimes it is more convenient to use declarative relational AP/s 
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DataFrames: In a Nutshell 

DataFrames are ... 

A relational API over Spark's RDDs 

Because sometimes it is more convenient to use declarative relational AP/s 

than functional AP/s for analysis jobs. 

Able to be automatically aggressively optimized 

Spark SQL applies years of research on relational optimizations in the 

databases community to Spark. 

Untyped! 

The elements within DataFrames are Rows, which are not parameterized by 

a type. Therefore, the Scala compiler cannot type check Spark SQL 

schemas in DataFrames. 
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DataFrames Data Types 

To enable optimization opportunities, Spark SQL's DataFrames operate on 

a restricted set of data types. 

Basic Spark SQL Data Types: 

Scala Type SQL Type Details 

Byte 
Short 
Int 
Long 
java.math.BigDecimal 
Float 
Double 
Array[Byte] 
Boolean 
Boolean 
java.sql.Timestamp 
java.sql.Date 
String 

ByteType 
Short Type 
IntegerType 
LongType 
Decimal Type 
Float Type 
Double Type 
BinaryType 
Boolean Type 
Boolean Type 
Times tamp Type 
DateType 
StringType 

1 byte signed integers (-128,127) 
2 byte signed integers (-32768,32767) 
4 byte signed integers (-2147483648,2147483647) 
8 byte signed integers 
Arbitrary precision signed decimals 
4 byte floating point number 
8 byte floating point number 
Byte sequence values 
true/false 
true/false 
Date containing year, month, day, hour, minute, and second. 
Date containing year, month, day. 
Character string values (stored as UTF8) 
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To enable optimization opportunities, Spark SQL's DataFrames operate on 

a restricted set of data types. 

Complex Spark SQL Data Types: 

Scala Type SQL Type 
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Map[K, VJ 

case class 
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DataFrames Data Types 

To enable optimization opportunities, Spark SQL's DataFrames operate on 

a restricted set of data types. 

Complex Spark SQL Data Types: 

Scala Type SQL Type 

Array[TJ 

Map[K, VJ 

case class 

Arrays 

ArrayType(elementType, containsNull) 

MapType(keyType, valueType, valueContainsNull) 

StructType(List[StructFields]) 

Array of only one type of element ( elementType}. containsNull is set to true if the 
elements in ArrayType value can have null values. 

Example: 
II Scala type 

Array[String] 

II SQL type 

ArrayType(StringType, true) 



DataFrames Data Types 

To enable optimization opportunities, Spark SQL's DataFrames operate on 

a restricted set of data types. 

Complex Spark SQL Data Types: 

Scala Type SQL Type 

Array[TJ 

Map[K, VJ 

case class 

Maps 

ArrayType(elementType, containsNull) 

MapType(keyType, valueType, valueContainsNull) 

StructType(List[StructFields]) 

Map of key /value pairs with two types of elements. valuecontainsNull is set to true if 
the elements in MapType value can have null values. 

Example: 
II Scala type II SQL type 

Map[Int,String] MapType(IntegerType, StringType, true) 



DataFrames Data Types 

To enable optimization opportunities, Spark SQL's DataFrames operate on 

a restricted set of data types. 

Complex Spark SQL Data Types: 

Scala Type SQL Type 

Array[TJ 

Map[K, VJ 

case class 

Structs 

ArrayType(elementType, containsNull) 

MapType(keyType, valueType, valueContainsNull) 

StructType(List[StructFields]) 

Struct type with list of possible fields of different types. containsNull is set to true if the 
elements in StructFields can have null values. 

Example: 
// Scala type 
case class Person(name: String, age: Int) 

// SQL type 
StructType(List(StructField("name", StringType, true), 

StructField("age", IntegerType, true))) 



Complex Data Types Can Be Combined� 

It's possible to arbitrarily nest complex data types! For example: 

// Scala type 
case class Account( 

balance: Double, 

employees: 
Array[Employee]) 

case class Employee( 
id: Int, 

name: String, 

jobTitle: String) 

case class Project( 
title: String, 

team: Array[Employee], 

acct: Account) 

// SQL type 

StructType( 

StructField(title,StringType,true), 

StructField( 

team, 

ArrayType( 

StructType(StructField(id,IntegerType,true), 

StructField(name,StringType,true), 

StructField(jobTitle,StringType,true)), 

true), 

true), 

StructField( 

) 

acct, 

StructType( 

StructField(balance,DoubleType,true), 

StructField( 

employees, 

ArrayType( 

StructType(StructField(id,IntegerType,true), 

StructField(name,StringType,true), 

StructField(jobTitle,StringType,true)), 

true), 

true) 

) ' 

true) 



Accessing Spark SQL Types 

Important. 

In order to access any of these data types, either basic or complex, you 
must first import Spark SQL types! 

import org.apache.spark.sql.types._ 



Data Frames Operations Are More Structured� 

When introduced, the DataFrames API introduced a number of 

relational operations. 

The main difference between the ROD AP/ and the DataFrames AP/ was that 

DataFrame AP/s accept Spark SQL expressions, instead of arbitrary user-defined 

function literals like we were used to on RDDs. This allows the optimizer to 

understand what the computation represents, and for example with filter, it can 

often be used to skip reading unnecessary records. 

DataFrames API: Similar-looking to SQL. Example methods include: 

� select 
� where 
� limit 
� orderBy 
� groupBy 
� join 
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Before we get into transformations and actions on DataFrames, let's first 

look at the ways we can have a look at our data set. 

show() pretty-prints DataFrame in tabular form. Shows first 20 elements. 



Getting a look at your data 

Before we get into transformations and actions on DataFrames, let's first 

look at the ways we can have a look at our data set. 

show() pretty-prints DataFrame in tabular form. Shows first 20 elements. 

Example: 

case class Employee(id: Int, fname: String, lname: String, age: Int, city: String) 

val employeeDF = sc.parallelize( ... ).toDF 
employeeDF.show() 

II+---+-----+-------+---+--------+ 

II I idlfnamel lnamelagel cityl 
II+---+-----+-------+---+--------+ 

II I 121 Joel Smithl 38INew Yorkl 
II l563ISallyl Owensl 481New Yorkl 
II l645ISlatelMarkhaml 281 Sydneyl 
II 1221 I David I Walker I 21 I Sydney I 
II+---+-----+-------+---+--------+ 
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Getting a look at your data 

Before we get into transformations and actions on DataFrames, let's first 

look at the ways we can have a look at our data set. 

printSchema() prints the schema of your DataFrame in a tree format. 

Example: 

case class Employee(id: Int, fname: String, lname: String, age: Int, city: String) 

val employeeDF = sc.parallelize( ... ).toDF 
employeeDF.printschema() 

II root 
II 1-- id: integer (nullable = true) 
II 1-- fname: string (nullable = true) 
II 1-- lname: string (nullable = true) 
II 1-- age: integer (nullable = true) 
II 1-- city: string (nullable = true) 
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DataFrame as a result, and (2) are lazily evaluated. 



Common DataFrame Transformations 

Like on RDDs, transformations on DataFrames are (1) operations which return a 
DataFrame as a result, and (2) are lazily evaluated. 

Some common transformations include: 

def select(col: String, cols: String*): DataFrame 
II selects a set of named columns and returns a new DataFrame with these 
II columns as a result. 

def agg(expr: Column, exprs: Column*): DataFrame 
II performs aggregations on a series of columns and returns a new DataFrame 
II with the calculated output. 

def groupBy(col1: String, cols: String*): �taFrame II simplified 

,-
-

I 

II groups the DataFrame using the specified columns. Intended to be used before an aggregation. 

def join(right: DataFrame): QataFram� II simplified 
II inner join with another DataFrame 



Common DataFrame Transformations 

Like on RDDs, transformations on DataFrames are (1) operations which return a 
DataFrame as a result, and (2) are lazily evaluated. 

Some common transformations include: 

def select(col: String, cols: String*): DataFrame 
II selects a set of named columns and returns a new DataFrame with these 
II columns as a result. 

def agg(expr: Column, exprs: Column*): DataFrame 
II performs aggregations on a series of columns and returns a new DataFrame 
II with the calculated output. 

def groupBy(col1: String, cols: String*): DataFrame II simplified 
II groups the DataFrame using the specified columns. Intended to be used before an aggregation. 

def join(right: DataFrame): DataFrame II simplified 
II inner join with another DataFrame 

Other transformations include: f i 1 ter, 1 imi t, orde rBy, where, as, sort, union, drop, 

amongst others. 



Specifying Columns 

As you might have observed from the previous slide, most methods take a 
parameter of type Column or String, always referring to some attribute/column in 
the data set. 

Most methods on DataFrames tend to some well-understood, pre-defined 
operation on a column of the data set 

You can select and work with columns in three ways: 

1. Using $-notation 

// $-notation requires: import spark.implicits._ 

df.filter($''age'' > 18) 

2. Referring to the Dataframe 

df. fil ter(df ("age")> 18)) 

3. Using SQL query string 

df. fil ter(''age > 18'') 



DataFrame Transformations: Example 

Example: 

Recall the example SQL query that we did in the previous session on a 
data set of employees. Rather than using SQL syntax, let's convert our 
example to use the DataFrame API. 

case class Employee(id: Int, fname: String, lname: String, age: Int, city: String) 

val employeeDF = sc.parallelize( ... ).toDF 

We'd like to obtain just the IDs and last names of employees working in a 
specific city, say, .?ydney, Australia. Let's sort our result in order of 
increasing employee ID. 

How could we solve this with the DataFrame API? 
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Example: 
We'd like to obtain just the IDs and last names of employees working in a specific city, 
say, Sydney, Australia. Let's sort in order of increasing employee ID. 

case class Employee(id: Int, fname: String, lname: String, age: Int, city: String) 

val employeeDF = sc.parallelize( ... ).toDF 

val sydneyEmployeesDF = employeeDF.select("id", "lname") 
.where("city == 'Sydney'") 
.orderBy("id") 



DataFrame Transformations: Example 

Example: 
We'd like to obtain just the IDs and last names of employees working in a specific city, 
say, Sydney, Australia. Let's sort in order of increasing employee ID. 

case class Employee(id: Int, fname: String, lname: String, age: Int, city: String) 

val employeeDF = sc.parallelize( ... ).toDF 

val sydneyEmployeesDF = employeeDF.select("id", "lname") 
.where("city == 'Sydney'") 
.orderBy("id") 

II employeeDF: 
II+---+-----+-------+---+--------+ 

II I idlfnamel lnamelagel cityl 
II+---+-----+-------+---+--------+ 

II I 121 Joel Smithl 381New Yorkl 
II l563ISallyl Owensl 481New Yorkl 
II l645ISlatelMarkhaml 281 Sydneyl 
II 1221 I David I Walker I 21 I Sydney I 
II+---+-----+-------+---+--------+ 



DataFrame Transformations: Example 

Example: 
We'd like to obtain just the IDs and last names of employees working in a specific city, 
say, Sydney, Australia. Let's sort in order of increasing employee ID. 

case class Employee(id: Int, fname: String, lname: String, age: Int, city: String) 

val employeeDF = sc.parallelize( ... ).toDF 

val sydneyEmployeesDF = employeeDF.select("id", "lname") 
.where("city == 'Sydney'") 
.orderBy("id") 

II employeeDF: 
II+---+-----+-------+---+--------+ 

II I idlfnamel lnamelagel city I 
II+---+-----+-------+---+--------+ 

II I 121 Joel Smithl 381New Yorkl 
II l563ISallyl Owensl 481New Yorkl 
II l645ISlatelMarkhaml 281 Sydneyl 
II 1221 I David I Walker I 21 I Sydney I 
II+---+-----+-------+---+--------+ 

sydneyEmployeesDF: 
+---+-------+ 
I idl lnamel 
+---+-------+ 

1221 I Walker I 
l6451Markhaml 
+---+-------+ 



Filtering in Spark SQL 

The DataFrame API makes two methods available for filtering: 
filter and where (from SQL). They are equivalent! 

val over30 = employeeDF.filter("age > 30").show() 

II+---+-----+-----+---+--------+ 

II I idlfnamellnamelagel cityl 

II+---+-----+-----+---+--------+ 

II I 121 JoelSmithl 381New Yorkl 

II l563ISallylOwensl 481New Yorkl 

II+---+-----+-----+---+--------+ 

val over30 = employeeDF.where("age > 30").show() 

II+---+-----+-----+---+--------+ 

II I idlfnamellnamelagel city I 

II+---+-----+-----+---+--------+ 

II I 121 JoelSmithl 381New Yorkl 

II l563ISallylOwensl 481New Yorkl 

II+---+-----+-----+---+--------+ 



Filtering in Spark SQL 

The DataFrame API makes two methods available for filtering: 
filter and where (from SQL). They are equivalent! 

val over30 = employeeDF.filter("age > 30").show() 

II+---+-----+-----+---+--------+ 

II I idlfnamellnamelagel cityl 

II+---+-----+-----+---+--------+ 

II I 121 JoelSmithl 381New Yorkl 

II l563ISallylOwensl 481New Yorkl 

II+---+-----+-----+---+--------+ 

Filters can be more complex too: 

val over30 = employeeDF.where("age > 30").show() 

II+---+-----+-----+---+--------+ 

II I idlfnamellnamelagel cityl 

II+---+-----+-----+---+--------+ 

II I 121 JoelSmithl 381New Yorkl 

II l563ISallylOwensl 481New Yorkl 

II+---+-----+-----+---+--------+ 

We can compare results between attributes/columns. Though can be more difficult to optimize. 

employeeDF.filter(($"age" > 25) && ($"city" === "Sydney")).show() 
II+---+-----+-------+---+------+ 

II I idlfnamel lnamelagel cityl 
II+---+-----+-------+---+------+ 

II l645ISlatelMarkhaml 28ISydneyl 
II+---+-----+-------+---+------+ 
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One of the most common tasks on tables is to (1) group data by a certain 
attribute, and then (2) do some kind of aggregation on it like a count. 
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Grouping and Aggregating on DataFrames 

One of the most common tasks on tables is to (1) group data by a certain 
attribute, and then (2) do some kind of aggregation on it like a count. 

For grouping & aggregating ,  Spark SQ L provides: 

..._ a g roupBy function which returns a Re l a t i ona lG roupedDa taset  

..._ which has several standard aggregation functions def ined on it like cou n t, 
s um, max, m i n, and avg. 

How to group and aggregate? 

..._ Just ca 1 1  g roupBy on specif i c attribute/ column ( s) of a Da ta F rame, 

..._ followed by a call to a method on Re l a t i ona lG roupedDa taset  like cou n t, max, 
or agg (for agg, also specify which attribute/column(s) subsequent 
spa rk .  sq l . fu nct i ons  like cou n t, s um, max, etc, should be called upon.) 

df . g rou pBy ( $ '' a t t r i bu te 1 ' ' ) 

. agg ( s um ( $ '' a t t r i bu te 2 '' ) )  

df . g rou pBy ( $ '' a t t r i bu te 1  ' ' ) 

. count ( $ '' a t t r i bu te 2 '' ) 



Grouping and Aggregating on DataFrames : Example 

Example: 

Let's assume that we have a dataset of homes currently for sale in an 
entire U S  state. Let's calculate the most expensive, and least expensive 
homes for sale per zip code. 

case class Listing(street: String, zip: Int, price: Int) 

val listingsDF = ... // DataFrame of Listings 

How could we do this with DataFrames? 



Grouping and Aggregating on DataFrames : Example 

Example: 

Let's assume that we have a dataset of homes currently for sale in an 
entire U S  state. Let's calculate the most expensive, and least expensive 
homes for sale per zip code. 

case class Listing(street: String, zip: Int, price: Int) 

val listingsDF = . . .  / /  DataFrame of Listings 

import org.apache.spark.sql.functions._ 

val mostExpensiveDF = listingsDF.groupBy( $"zip") 
.max("price") 

val leastExpensiveDF = listingsDF.groupBy( $"zip") 
.min("price") 



G rou p i ng  a n d Aggregat i ng  o n  Data F ra mes :  H a rd e r  Exa m p l e  

Exam ple : 

Let ' s  assume we have the following data set representing all of the posts in a 
busy open source community ' s  Discourse forum. 

case class Post(authorID: Int, subforum: String, likes: Int, date: String) 

val postsDF = ... // DataFrame of Posts 

Let ' s  say we would like to tally up each authors ' posts per subforum, and then 
rank the authors with the most posts per subforum. 

H ow cou ld we do th is  with Data Frames? 



G rou p i ng  a n d Aggregat i ng  o n  Data F ra mes :  H a rd e r  Exa m p l e  

Exam ple : 

Let ' s  assume we have the following data set representing all of the posts in a 
busy open source community ' s  Discourse forum. 

case class Post(authorID: Int, subforum: String, likes: Int, date: String) 

val postsDF = ... // DataFrame of Posts 

Let ' s  say we would like to tally up each authors ' posts per subforum, and then 
rank the authors with the most posts per subforum. 

import org.apache.spark.sql.functions._ 

val rankedDF = 
postsDF.groupBy( $"authorID", $"subforum") 

.agg(count( $"authorID")) // new DF with columns authorID, subforum, count(authorID) 

.orderBy( $"subforum", $"count(authorID)".desc) 
� 



Grouping and Aggregating on DataFrames : Harder Example 

Exam ple : Let 's  say we would like to tally up each authors ' posts per subforum, 
and then rank the authors with the most posts per subforums. 

val rankedDF = postsDF.groupBy( $"authorID", $"subforum") 
.agg(count( $"authorID")) 
.orderBy( $"subforum", $"count(authorID)".desc) 

II postsDF: 
II +- - - - - - - -+- - - - - - - -+- - - - -+- - - -+ 

II lauthorIDlsubforumllikesldatel 
II +- - - - - - - -+- - - - - - - -+- - - - -+- - - -+ 

II 1 I design I 21 
II 1 I debate I 01 
II 21 debate I 01 
II 31 debate I 231 
II 1 I design I 1 I 
II 1 I design I 01 
II 21 design I 01 
II 21 debate I 01 
II +- - - - - - - -+- - - - - - - -+- - - - -+- - - -+ 

rankedDF: 
+--------+--------+---------------+ 

lauthorIDlsubforumlcount(authorID)I 
+--------+--------+---------------+ 

l2 1  debatej) 21 
1 I debate I 
3 deba 
1 I design I 
21 designl 

1 I 
1 I 
31 
1 I 

+--------+--------+---------------+ 



• 

Grouping and Aggregating on DataFrames 

A{ Prfl 
After ca l l i ng groupBy , methods on Relat ionalG roupedDataset : 

To see a l i st of a l l  o p e ra t i o n s  yo u 

ca n ca l l  fo l l ow i n g a g ro u pBy , see t h e  A P I d o cs fo r Re l a t i o n a l G rou ped Da t a s e t . 
http : //spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.RelationalGroupedDataset 

re- Afr 
Methods with in  agg :  

Exa m p l es i n c l u d e:  m i n ,  ma x ,  s um , mea n , s t ddev , co u n t , a vg ,  f i rs t ,  l a s t . To 

see a l i st of a l l  o p e ra t i o n s  yo u ca n ca l l  w it h i n  a n  a gg ,  see t h e  A P I d o cs fo r 
o rg . a pa c h e . s pa r k . s q l . fu n c t i o n s . 
http : //spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sgl.functions! 


