_ Gl

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Spark SQL

Big Data Analysis with Scala and Spark
Heather Miller

Relational Databases

SQL is the lingua franca for doing analytics.

Relational Databases

SQL is the lingua franca for doing analytics.

But it's a pain in the neck to connect big data processing pipelines like
Spark or Hadoop to an SQL database.

Wouldn'’t it be nice...

> if it were possible to seamlessly intermix SQL queries with Scala?
> to get all of the optimizations we're used to in the databases
community on Spark jobs?

Relational Databases

SQL is the lingua franca for doing analytics.

But it's a pain in the neck to connect big data processing pipelines like
Spark or Hadoop to an SQL database.

Wouldn'’t it be nice...

> if it were possible to seamlessly intermix SQL queries with Scala?
> to get all of the optimizations we're used to in the databases
community on Spark jobs?

Spark SQL delivers both!

Spark SQL: Goals

Three main goals:

1. Support relational processing both within Spark programs (on
RDDs) and on external data sources with a friendly API.

Sometimes it’s more desirable to express a computation in SQL syntax
than with functional APIs and vice a versa.

Spark SQL: Goals

Three main goals:

1. Support relational processing both within Spark programs (on
RDDs) and on external data sources with a friendly API.

2. High performance, achieved by using techniques from research in
databases.

3. Easily support new data sources such as semi-structured data and
external databases.

Spark SQL

Spark SQL is a component of the Spark stack.

» |t is a Spark module for structured data processing.
» |t is implemented as a library on top of Spark.

Spark SQL

Spark SQL is a component of the Spark stack.

» |t is a Spark module for structured data processing.
» |t is implemented as a library on top of Spark.

Three main APls:
» SQL literal syntax

» DataFrames

» Datasets

Spark SQL

Spark SQL is a component of the Spark stack.

» |t is a Spark module for structured data processing.
» |t is implemented as a library on top of Spark.

Three main APls:
» SQL literal syntax

» DataFrames

» Datasets

Two specialized backend components:

» Catalyst, query optimizer.
» Tungsten, off-heap serializer.

Spark SQL

Spark SQL is a component of the Spark stack.

» |t is a Spark module for structured data processing.
» |t is implemented as a library on top of Spark.

Visually, Spark SQL relates to the rest of Spark like this:

Spark SQL

Spark SQL is a component of the Spark stack.

» |t is a Spark module for structured data processing.
» |t is implemented as a library on top of Spark.

Visually, Spark SQL relates to the rest of Spark like this:

Spark SQL

Spark SQL is a component of the Spark stack.

» |t is a Spark module for structured data processing.
» |t is implemented as a library on top of Spark.

Visually, Spark SQL relates to the rest of Spark like this:

User Programs

Relational Queries (SQL)

Everything about SQL is structured.

In fact, SQL stands for structural query language.

» There are a set of fixed data types. Int, Long, String, etc.
» There are fixed set of operations. SELECT, WHERE, GROUP BY, etc.

Research and industry surrounding relational databases has focused on
exploiting this rigidness to get all kinds of performance speedups.

Relational Queries (SQL)

Everything about SQL is structured.

In fact, SQL stands for structural query language.

» There are a set of fixed data types. Int, Long, String, etc.
» There are fixed set of operations. SELECT, WHERE, GROUP BY, etc.

Research and industry surrounding relational databases has focused on
exploiting this rigidness to get all kinds of performance speedups.

Let's quickly establish a common set of vocabulary and a baseline
understanding of SQL.

Relational Queries (SQL)

Data organized into one or more tables

Customer Name Destination Ticket Price
"Weitz" "Luzern" 53.20
"Schinz" "Zurich" 32.40
"Dubois” "Neuchatel" 12.50

"Hug" "Basel" 32.10
"Strub" "Winterthur" 9.60
"Chapuis" "Lausanne" 6.60
"Smith" "Genéve" 12.70

"Weitz" "Bern" 21.40

Relational Queries (SQL)

. . columns
Data organized into one or more tables vf\
> Tab|es Contain COIumnS and FOWS. Customer Name Destination Ticket Price
"Weitz" "Luzern" 53.20
"Schinz" "Ziirich" 32.40
"Dubois" "Neuchatel" 12.50
"Hug" "Basel" 32.10
"Strub" "Winterthur" 9.60
"Chapuis" "Lausanne" 6.60
"Smith" "Genéve" 12.70

"Weitz" "Bern" 21.40

Relational Queries (SQL)

Data organized into one or more tables

) Tables contain columns and rows. Customer Name Destination Ticket Price
h "Weitz" "Luzern" 53.20
rFOWS "Schinz" "Ziirich" 32.40
"Dubois" "Neuchatel" 12.50
"Hug" "Basel" 32.10
"Strub" "Winterthur" 9.60
"Chapuis" "Lausanne" 6.60
"Smith" "Genéve" 12.70

"Weitz" "Bern" 21.40

Relational Queries (SQL)

Data organized into one or more tables

SBB customers dataset/\'

\

» Tables contain columns and rows. Customer _Name Destination Ticket Price
» Tables typically represent a collection Veitz: Lz 2920
of objects of a certain type, such as "Schinz" "Ziirich" 32.40
customers or products "Dubois" "Neuchétel" 12.50
"Hug" "Basel" 32.10
"Strub" "Winterthur" 9.60
"Chapuis" "Lausanne" 6.60
"Smith" "Genéve" 12.70

"Weitz" "Bern" 21.40

Relational Queries (SQL)

. . attribute
Data organized into one or more tables vf\
» Tables contain columns and rows. Customer Name Destination Ticket Price
» Tables typically represent a collection Sl CItzs "Luzern” 53.20
of objects of a certain type, such as "Schinz" "Ziirich" 32.40
customers or products "Dubois" "Neuchétel" 12.50
"Hug" "Basel" 32.10
A relation i1s just a table. "Strub" "Winterthur" 9.60
Attributes are columns. Chapuis Lausanne 060
"Smith" "Genéve" 12.70

"Weitz" "Bern" 21.40

Relational Queries (SQL)

Data organized into one or more tables

» Tables contain columns and rows. Customer Name Destination Ticket Price
» Tables typically represent a collection Weitz? ‘Luzem® 53.20
of objects of a certain type, such as "Schinz" "Ziirich" 32.40
customers or products "Dubois" "Neuchétel" 12.50
"Hug" "Basel" 32.10
A relation is just a table. r‘* "Strub" "Winterthur" 9.60
Attributes are columns. record "Chapuis® Lausanne 5.60
/tuple "Smith" "Genéve" 12.70

Rows are records or tuples |
"Weitz" "Bern" 21.40

Spark SQL

DataFrame is Spark SQL’s core abstraction. DataFrame, is a table, sort of.

Conceptually equivalent to a table in a Customer Name Destination Ticket Price
relational database.

"Weitz" "Luzern" 53.20
"Schinz" "Ziirich" 32.40
"Dubois" "Neuchatel" 12.50
"Hug" "Basel" 32.10
"Strub" "Winterthur" 9.60
"Chapuis" "Lausanne" 6.60
"Smith" "Genéve" 12.70

"Weitz" "Bern" 21.40

Spark SQL

DataFrame is Spark SQL’s core abstraction. DataFrame, is a table, sort of.

Conceptually equivalent to a table in a Customer Name Destination Ticket Price
relational database.

"Weitz" "Luzern" 53.20

"Schinz" "Ziurich" 32.40

DataFrames are, conceptually, RDDs 'Dubois" "Neuchatel" 12 50
full of records with a known schema o o

— _ p— Hug Basel 32.10

: ’ . " L "Winterthur" 0.60

d.'8+/' L}‘d'(at @[leo{qb/\' o_F WS/rCCDfdJ. Strub Interthur
"Chapuis" "Lausanne" 6.60
"Smith" "Genéve" 12.70

"Weitz" "Bern" 21.40

Spark SQL

DataFrame is Spark SQL’s core abstraction. DataFrame, is a table, sort of.

Conceptually equivalent to a table in a Customer Name Destination Ticket Price
relational database.

"Weitz" "Luzern" 53.20

"Schinz" "Zirich" 32.40

DataFrames are, conceptually, RDDs i T o
full of records with a known schema g S 10
1Strub” "Winterthur" 9.60

"Chapuis" "Lausanne" 6.60

Unlike RDDs though, DataFrames omith” Geneves 210
require some kind of schema info! RS s 2k

v_‘

Spark SQL

DataFrame is Spark SQL’s core abstraction. DataFrame, is a table, sort of.

Conceptually equivalent to a table In a Customer Name Destination Ticket Price
relational database.

"Weitz" "Luzern" 53.20
"Schinz" "Zurich" 32.40
DataFrames are, conceptually, RDDs 'Dubois" "Neuchatel" 19160
full of records with a known schema o o
Hug Basel 32.10
\| 1/ Winterthr
. "Strub” Winterthur 9.60
DataFrames are untyped! - — " " e
)) , apuls ausanne :
That i1s, the Scala compiler doesn’t check
.. I "Smith" "Genéve" 12.70
the types in its schemal
_ _ "Weitz" "Bern" 21.40
DataFrames contain Rows which can
contain any schema. U
KOD [T

DodaFame,

Spark SQL

DataFrame is Spark SQL’s core abstraction. DataFrame, is a table, sort of.

Conceptually equivalent to a table in a
relational database.

Customer Name Destination Ticket Price

"Weitz" "Luzern" 53.20
"Schinz" "Zurich" 32.40
DataFrames are, conceptually, RDDs 'Dubois" "Neuchatel" 19160
full of records with a known schema o o
Hug Basel 32.10
"Strub" "Winterthur" 9.60
DataFrames are untyped! — " " e
)) , apuls ausanne :
That is, the Scala compiler doesn’t check
.. I "Smith" "Genéve" 12.70
the types in its schemal
"Weitz" "Bern" 21.40

Transformations on DataFrames are also

known as untyged transformations

SparkSession

To get started using Spark SQL, everything starts with the SparkSession

SparkSession

To get started using Spark SQL, everything starts with the SparkSession

import org.apache.spark.sql.SparkSession

val spark = SparkSession
.builder()
.appName (”My App”)
//.config(”spark.some.config.option”, ”some-value”)
.getOrCreate()

Creating DataFrames

DataFrames can be created in two ways:

1. From an existing RDD.
Either with schema inference, or with an explicit schema.

2. Reading in a specific data source from file.
Common structured or semi-structured formats such as JSON.

Creating DataFrames

(1a) Create DataFrame from RDD, schema reflectively inferred

l—-—‘

Given pair RDD, RDDL(T1, T2, ... TN)], a DataFrame can be created with
its schema automatically inferred by simply using the toDF method.

val tupleRDD = ... // Assume RDD[(Int, String String, String)]
val tupleDF = tupleRDD.toDF(”1d”, ”name”, ”city”, ”country”) // column names

Note: if you use toDF without arguments, Spark will assign numbers as attributes

(column names) to your DataFrame. -2 _3

Creating DataFrames

(1a) Create DataFrame from RDD, schema reflectively inferred

Given pair RDD, RDDL(T1, T2, ... TN)], a DataFrame can be created with
its schema automatically inferred by simply using the toDF method.

val tupleRDD = ... // Assume RDD[(Int, String String, String)]

val tupleDF = tupleRDD.toDF(”1d”, ”name”, ”city”, ”country”) // column names

Note: if you use toDF without arguments, Spark will assign numbers as attributes

(column names) to your DataFrame.

If you already have an RDD containing some kind of case class instance,
then Spark can infer the attributes from the case class’s fields.

case class Person(id: Int, name: String, city: String)

val peopleRDD = ... // Assume RDD[Person]
<z

1 leDF = 1eRDD. toDF
val people people 0

Creating DataFrames

(1b) Create DataFrame from existing RDD, schema explicitly specified

Sometimes it's not possible to create a DataFrame with a pre-determined
case class as its schema. For these cases, it's possible to explicitly specity
a schema.

It takes three steps:

» Create an RDD of Rows from the original RDD.

» Create the schema represented by a StructType matching the structure of Rows in
the RDD created in Step 1.
» Apply the schema to the RDD of Rows via createDataFrame method provided by

Y =,
SparkSession.

Given:

case class Person(name: String, age: Int)
val peopleRdd = sc.textFile(...) // Assume RDD[Person]

Creating DataFrames

(1b) Create DataFrame from existing RDD, schema explicitly specified

// The schema 1is encoded in a string
val schemaString = ”name age”

// Generate the schema based on the string of schema

val fields = schemaString.split(” ”)
.map(fieldName => §ﬁructFiel§(fieldName, StringType, nullable = true))

val schema = StructType(fields)

// Convert records of the RDD (people) to Rows
val rowRDD = peopleRDD

.map(_.split(”,”))
.map(attributes => Row(attributes(@), attributes(1).trim))

// Apply the schema to the RDD

val peopleDF = spark.createDataFrame(rowRDD, schema)
— e ————— - .

Creating DataFrames

(2) Create DataFrame by reading in a data source from file.

Using the SparkSession object, you can read in semi-structured/structured
data by using the read method. For example, to read in data and infer a

schema from a JSON file:

// ‘spark‘ 1s the SparkSession object we created a few slides back

val df = spark.read.json(”examples/src/main/resources/people.json”)
—

Creating DataFrames

(2) Create DataFrame by reading in a data source from file.

Using the SparkSession object, you can read in semi-structured/structured

data by using the read method. For example, to read in data and infer a
schema from a JSON file:

// ‘spark‘ 1s the SparkSession object we created a few slides back
val df = spark.read. json(”examples/src/main/resources/people.json”)

Semi-structured /Structured data sources Spark SQL can directly
create DataFrames from:

To see a list of all available methods for directly
JSON reading in semi-structured/structured data, see the
CSV latest APl docs for DataFrameReader:

Parquet http://spark.apache.org/docs/latest/api/scala/

JDBC

vV v v ¥V

index.html#org. apache.spark.sql.DataFrameReader

SQL Literals

Once you have a DataFrame to operate on, you can now freely write
familiar SQL syntax to operate on your dataset!

SQL Literals

Once you have a DataFrame to operate on, you can now freely write
familiar SQL syntax to operate on your dataset!

Given:

A DataFrame called peopleDF, we just have to register our DataFrame as a
temporary SQL view first:

// Register the DataFrame as a SQL temporary view
peopleDF.createOrReplaceTempView(”people”)

// This essentially gives a name to our DataFrame in SQL
// so we can refer to it in an SQL FROM statement

SQL Literals

Once you have a DataFrame to operate on, you can now freely write
familiar SQL syntax to operate on your dataset!

Given:

A DataFrame called peopleDF, we just have to register our DataFrame as a
temporary SQL view first:

// Register the DataFrame as a SQL temporary view
peopleDF.createOrReplaceTempView(”people”)

// This essentially gives a name to our DataFrame in SQL
// so we can refer to it in an SQL FROM statement

// SQL literals can be passed to Spark SQL’s sqgl method
val adultsDF
= spark.sql ("SELECT * FROM people WHERE age > 177)
S ER—t

P

SQL Literals

The SQL statements available to you are largely what's available in
HiveQL. This includes standard SQL statements such as:

SQL Literals

The SQL statements available to you are largely what's available in
HiveQL. This includes standard SQL statements such as:

> SELECT > HAVING > DISTINCT

> FROM > GROUP BY > JOIN

» WHERE » ORDER BY > (LEFT|RIGHT|FULL)
> COUNT » SORT BY OUTER JOIN

» Subqueries: SELECT col

/ FROM (SELECT a + b AS
col from t1) t2
Supported Spark SQL syntax:

https://docs.datastax.com/en/datastax_enterprise/4.6/datastax_enterprise/spark/sparkSqlSupportedSyntax.html

For a HiveQL cheatsheet:
https://hortonworks.com/blog/hive-cheat-sheet-for-sql-users/

For an updated list of supported Hive features in Spark SQL, the official Spark SQL docs enumerate:
https://spark.apache.org/docs/latest/sql-programming-guide.html#supported-hive-features

A More Interesting SQL Query

Let's assume we have a DataFrame representing a data set of employees:

case class Employee(id: Int, fname: String, lname: String, age: Int, city: String)

// DataFrame with schema defined in Employee case class
val employeeDF = sc.parallelize(...).toDF

A More Interesting SQL Query

Let's assume we have a DataFrame representing a data set of employees:

case class Employee(id: Int, fname: String, lname: String, age: Int, city: String)

// DataFrame with schema defined in Employee case class
val employeeDF = sc.parallelize(...).toDF

Let's query this data set to obtain just the IDs and last names of
employees working in a specific city, say, Sydney, Australia. Let's sort our
result in order of increasing employee ID.

What would this SQL query look like?

A More Interesting SQL Query

Let's assume we have a DataFrame representing a data set of employees:

case class Employee(id: Int, fname: String, lname: String, age: Int, city: String)

// DataFrame with schema defined in Employee case class \ "
. \ 'Y
val employeeDF = sc.parallelize(...).toDF re.aIJ'l'V‘—‘L ""“’?lo\/{p

val sydneyEmployeesDF
= spark.sql(”””SELECT 1id, lname
-ROM employees
WHERE city = ”Sydney”
ORDER BY 1d”””)

A More Interesting SQL Query

Let's assume we have a DataFrame representing a data set of employees:

case class Employee(id: Int, fname: String, lname: String, age: Int, city: String)

// DataFrame with schema defined in Employee case class
val employeeDF = sc.parallelize(...).toDF

val sydneyEmployeesDF
= spark.sql(”””SELECT 1id, lname
-ROM employees
WHERE city = ”Sydney”
ORDER BY 1d”””)

Pretty simple.

A More Interesting SQL Query

Let's visualize the result on an example dataset.

Given:

val employeeDF = sc.parallelize(...).toDF
W Y

// employeeDF: (’JWV\o\,w

// +t———+————- t—————— t-———t——————— +

// | id|fname| lname|age| city|

// +t———+————- t—————— t-———t——————— +

// | 12| Joe| Smith| 38|New York
// |563|Sally| Owens| 48|New York
// |645|Slate|Markham| 28| Sydney

// |221|David| Walker| 21 Sydney
// +t———+————= t—————— t-———t——————— +

A More Interesting SQL Query

Let's visualize the result on an example dataset.

Given:
val employeeDF = sc.parallelize(...).toDF

val sydneyEmployeesDF
= spark.sql (”””SELECT id, lname
FROM employees

WHERE city = ”Sydney”

ORDER BY id”””) Rasul¥ FQ,
// employeeDF: sydneyEmployeesDF:
// +———F+————- - -t + -t +
// | id|fname| lname]|age| city| | 1d| lname]
// +———+————- - -t + -t +
// | 12] Joe| Smith| 38|New York |221| Walker|
// |563|Sally| Owens| 48|New York |645|Markham|
// |645|Slate|Markham| 28| Sydney t———t—————— +
// |221|David| Walker| 21 Sydney
// +———+————- - -t +

Note: it's best to use Spark 2.1+ with Scala 2.11+ for doing SQL queries with Spark SQL.

	spark-4-2
	spark-session-missing
	spark-4-2
	spark-4-2

