B

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Structure and Optimization

Big Data Analysis with Scala and Spark
Heather Miller

Example: Selecting Scholarship Recipients

Let's imagine that we are an organization, CodeAward, offering
scholarships to programmers who have overcome adversity. Let's say we
have the following two datasets.

case class Demographic(id: Int,
age: Int,
codingBootcamp: Boolean,
country: String,
gender: String,
1sEthnicMinority: Boolean,
servedInMilitary: Boolean)
val demographics = sc.textfile(...)... // Pair RDD, (id, demographic)

case class Finances(id: Int,
hasDebt: Boolean,
hasFinancialDependents: Boolean,
hasStudentlLoans: Boolean,
income: Int)
val finances = sc.textfile(...)... // Pair RDD, (id, finances)

Example: Selecting Scholarship Recipients

Our data sets include students from many countries, with many life and
financial backgrounds. Now, let's imagine that our goal is to tally up and
select students for a specitic scholarship.

Example: Selecting Scholarship Recipients

Our data sets include students from many countries, with many life and
financial backgrounds. Now, let's imagine that our goal is to tally up and
select students for a specitic scholarship.

As an example, Let's count:

» Swiss students
» who have debt & financial dependents

How might we implement this Spark program?

// Remember, RDDs available to us:
val demographics = sc.textfile(...)... // Pair RDD, (id, demographic)

val finances = sc.textfile(...)... // Pair RDD, (id, finances)

Example: Selecting Scholarship Recipients

Possibility 1:

.
(Toh) (Dumpaghic, Firoees)

demographics. join(finances)
filter { p =>

p._2.
2.
2.

}.count

D .
D .

:l.country == ”Switzerland” &&
1;.qasFinancialDependents &&
Tg.qasDebt

Example: Selecting Scholarship Recipients

Possibility 1:

demographics. join(finances)
filter { p =>
p._2._1.country == ”"Switzerland” &&
0._2._2.hasFinancialDependents &&
0._2._2.hasDebt
}.count

Steps:

L. Inner join first
2. Filter to select people in Switzerland
3. Filter to select people with debt & financial dependents

Example: Selecting Scholarship Recipients

Possibility 2:

val filtered
= finances.filter(p => p._2.hasFinancialDependents && p._2.hasDebt)

demographics.filter(p => p._2.country == ”Switzerland”)
.join(filtered)
.count

Example: Selecting Scholarship Recipients

Possibility 2:

val filtered
= finances.filter(p => p._2.hasFinancialDependents && p._2.hasDebt)

demographics.filter(p => p._2.country == ”Switzerland”)
.join(filtered)
.count

Steps:

1. Filter down the dataset first (look at only people with debt &
financial dependents)

2. Filter to select people in Switzerland (look at only people in
Switzerland)

3. Inner join on smaller, filtered down dataset

Example: Selecting Scholarship Recipients

Possibility 3:

val cartesian .I.
. . Abnces
= demographics.cartesian(gemographics)

cartesian.filter {

case (p1, p2) => p‘]_‘] —— p2_1 k SM& [S
}
filter {
case (pl1, p2) => (pl._2.country == ”Switzerland”) &&

(p2._2.hasFinancialDependents) &&
(p2._2.hasDebt)

}.count

Example: Selecting Scholarship Recipients

Possibility 3:

val cartesian -F('A&./\ceg
= demographics. cartesian(demeerapfhics)

cartesian.filter {
case (pl1, p2) => pl._1 == p2._1

J
filter {
case (p1, p2) => (pl._2.country == ”Switzerland”) &&
(p2._2.hasFinancialDependents) &&
(p2._2.hasDebt)
}.count
Steps:

1. Cartesian product on both datasets
2. Filter to select resulting of cartesian with same [Ds
3. Filter to select people in Switzerland who have debt and financial dependents

Example: Selecting Scholarship Recipients

While for all three of these possible
examples, the end result is the same, the
time 1t takes to execute the job Is vastly

different.

Example: Selecting Scholarship Recipients

While for all three of these possible
examples, the end result is the same, the
time 1t takes to execute the job Is vastly

different.

Possibility 1

> bs.join(fs)
filter(p => p._2.._
.count

» (1) Spark Jobs
res@: Long = 10

" AR

150,000 people,

Possibility 2

val fsi = fs.filter({
ds.filter(p => p._2.
.join(fs1i)
.count

» (1) Spark Jobs

3.75 -

25 -

Seconds

1.25

Filtering data first
is 3.6x faster!

Example: Selecting Scholarship Recipients

While for all three of these possible
examples, the end result is the same, the
time 1t takes to execute the job Is vastly =

different. é\

177x slower!

Seconds
o
O

“4 mins to
complete, versus

1.35 and 4.97
seconds

N ‘v %
S &
e © ©
> & 2
O(o ()e O‘a
L € <

Example: Selecting Scholarship Recipients

So far, a recurring theme has been that we have to think carefully about
how our Spark jobs might actually be executed on the cluster in order to
get good performance.

Example: Selecting Scholarship Recipients

So far, a recurring theme has been that we have to think carefully about
how our Spark jobs might actually be executed on the cluster in order to
get good performance.

Wouldn’t it be nice if Spark automatically knew, if we wrote the
code in possibility 3, that it could rewrite our code to possibility 27

Example: Selecting Scholarship Recipients

So far, a recurring theme has been that we have to think carefully about
how our Spark jobs might actually be executed on the cluster in order to
get good performance.

Wouldn’t it be nice if Spark automatically knew, if we wrote the
code in possibility 3, that it could rewrite our code to possibility 27

Given a bit of extra structural information, Spark can do many
optimizations for you!

Structured vs Unstructured Data

All data isn't equal, structurally. It falls on a spectrum from unstructured
to structured.

Unstructured SemiStRcHII

Structured vs Unstructured Data

All data isn't equal, structurally. It falls on a spectrum from unstructured
to structured.

Unstructured

Hole

Database
tables

Log files 4

Images a

N - -

Structured Data vs RDDs

Spark + regular RDDs don't know anything about the schema of the
data it's dealing with.

Structured Data vs RDDs

Spark + regular RDDs don't know anything about the schema of the
data it's dealing with.

Given an arbitrary RDD, Spark knows that the RDD is parameterized with
arbitrary types such as,

» Person
» Account
» Demographic

but it doesn’t know anything about these types’ structure.

Structured Data vs RDDs

Assuming we have a dataset of Account objects:

case class Account(name: String, balance: Double, risk: Boolean)

Spark/RDDS see: RDDLP\C(O\)M’]

Blobs of objects we know
nothing about, except that
they're called Account.

Spark can’t see inside this
object or analyze how it
may be used, and to
optimize based on that
usage. It's opaque.

Structured Data vs RDDs

Assuming we have a dataset of Account objects:

case class Account(name: String, balance: Double, risk: Boolean)

Spark/RDDs see:

QQQGQQ

A database/Hive sees: L’ typed values.

palancenmonae If Spark could see data this
balance: Double way, it could break up and
balance: Double only select the datatypes it
balance: Double needs to send around the

cluster.

Structured vs Unstructured Computation

The same can be said about computation.

In Spark:
» We do functional transformations on data.

» We pass user-defined function literals to higher-order
functions like map, flatMap, and filter.

=

Like the data Spark
operates on, function
literals too are completely
opaque to Spark.

A user can do anything
iInside of one of these, and
all Spark can see iIs

something like:
$anon$1@604f1a67

Structured vs Unstructured Computation

The same can be said about computation.

In Spark:

» We do functional transformations on data.

» We pass user-defined function literals to higher-order
functions like map, flatMap, and filter.

In a database/Hive: L_/‘\
» We do declarative transformations on data. Fixed set of operations,

» Specialized/structured, pre-defined operations. fixed set of types they
operate on.

Optimizations the norm!

Structured vs Unstructured

In summary:

Spark RDDs: 25 we know them so far
Q -o) Q .c ’ Q ’ Q

Databases/Hive:

balance: Double : Boolean SELECT

balance: Double : Boolean WHERE
ORDER BY

balance: Double : Boolean GROUP BY

balance: Double : Boolean COUNT

Structured vs Unstructured

In summary:

Spark RDDs: “

&eehtevd

Databases/Hive:

Not much structure.

Difficult to
aggressively optimize.

balance: Double : Boolean SELECT

balance: Double : Boolean WHERE
ORDER BY

balance: Double : Boolean GROUP BY

balance: Double : Boolean COUNT

Structured vs Unstructured

In summary:
Spark RDDs: ke
: : . ° O ° Not much structure.
. . ’ Q Difficult to
@ ® @ @ @ @ e

aggressively optimize.

Databases/Hive: “

balance: Double : Boolean SELECT

WHERE Lots of structure.
balance: Double : Boolean ORDER BY - |
balance: Double : Boolean GROUP BY Lots of optimization

A
balance: Double : Boolean COUNT opportunities:

Optimizations + Spark?

RDDs operate on unstructured data, and there are few limits on
computation; your computations are defined as functions that you've
written yourself, on your own data types.

But as we saw, we have to do all the optimization work ourselves!

Optimizations + Spark?

RDDs operate on unstructured data, and there are few limits on
computation; your computations are defined as functions that you've
written yourself, on your own data types.

But as we saw, we have to do all the optimization work ourselves!

Wouldn’t it be nice if Spark could do some of these optimizations
for us?

Optimizations + Spark?

RDDs operate on unstructured data, and there are few limits on
computation; your computations are defined as functions that you've
written yourself, on your own data types.

But as we saw, we have to do all the optimization work ourselves!

Wouldn’t it be nice if Spark could do some of these optimizations
for us?

Spark SQL makes this possible!

We've got to give up some of the freedom, flexibility, and generality of the functional
collections API in order to give Spark more opportunities to optimize though.

