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E.g., requiring lots of data to be transferred over the network, sometimes unnecessarily.

In the past sessions:

» we learned that shuffling sometimes happens on some
transformations.

In this session:

» we'll look at how RDDs are represented.

» we'll dive into how and when Spark decides it must shuffle data.
» we'll see how these dependencies make fault tolerance possible.
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Example:

. [ input file ]
val rdd = sc.textFile(...)

val filtered = rdd.map(...)

Filter(...) | rad |
.persist() map, filter
val count = filtered.count() [ filtared ]

val reduced = fitered.reduce(...)
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Spark represents RDDs in terms of these lineage graphs/DAGs

In fact, this is the representation/DAG is what Spark analyzes to do optimizations.
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RDDs are represented as:

» Partitions. Atomic pieces of the dataset.
Partition One or many per compute node.

Partition
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How are RDDs represented?

RDDs are made up of 2 important parts.

RDDs are represented as:
)

»

function

» A function for computing the dataset
based on its parent RDDs.

RDD » Metadata about its partitioning scheme
and data placement.
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RDD Dependencies and Shuffles

Previously, we arrived at the following rule of thumb for trying to
determine when a shuffle might occur:

Rule of thumb: a shuffle can occur when the resulting RDD depends on
other elements from the same RDD or another RDD.

In fact, RDD dependencies encode when data must move across
the network.

Transformations cause shuffles. Transformations can have two kinds of
dependencies:

1. Narrow Dependencies
2. Wide Dependencies



Narrow Dependencies vs Wide Dependences

Narrow Dependencies

Each partition of the parent RDD is used by at most one partition of the
child RDD. D
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Wide Dependencies

Each partition of the parent RDD may be depended on by multiple child
partitions.

R -



Narrow Dependencies vs Wide Dependences

Narrow Dependencies

Each partition of the parent RDD is used by at most one partition of the
child RDD.

Fast! No shuffle necessary. Optimizations like pipelining possible.

Wide Dependencies

Each partition of the parent RDD may be depended on by multiple child
partitions.

Slow! Requires all or some data to be shuffled over the network.
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Narrow dependencies:

join

map,

filter

union

Wide dependencies:

groupByKey

join
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Let’s visualize an example .
program and 1ts dependencies. .
A

groupBy .

Conceptually assuming the DAG:

join

map

What do the dependencies
look like?

Which dependencies are
wide, and which are narrow?
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Narrow Dependencies vs Wide Dependences, Visually

Let’s visualize an example

program and Its dependencies.

Wide transformations:
groupBy, join

Narrow transformations:

map, union, joiné

=)

why is this
side of the
join narrow!?



Narrow Dependencies vs Wide Dependences, Visually

Let’s visualize an example
program and Its dependencies.

Since G would be derived from B,
which 1tself is derived from a
groupBy and a shuffle on A, you
could imagine that we will have
already co-partitioned and
cached B in memory following
the call to groupBy.

Part of this join is thus a
narrow transformation.




Which transtormations have which kind of dependency?

Transformations with narrow Transformations with wide
dependencies: dependencies:
map (might cause a shuffle)
mapValues COgroup
flatMap groupWith
filter join
mapPartitions leftOuterJoin
mapPartitionsWithIndex rightOuterJoin
groupByKey
reduceByKey
combineByKey
distinct
intersection
repartition

coalesce



How can | find out?

dependencies method on RDDs.

dependencies returns a sequence of Dependency objects, which are actually
the dependencies used by Spark’'s scheduler to know how this RDD
depends on other RDDs.

The sorts of dependency objects the dependencies method may return
include:

Narrow dependency objects: Wide dependency objects:
» OneToOneDependency » ShuffleDependency
» PruneDependency

» RangeDependency



How can | find out?

dependencies method on RDDs.

dependencies returns a sequence of Dependency objects, which are actually
the dependencies used by Spark’s scheduler to know how this RDD
depends on other RDDs.

val wordsRdd = sc.parallelize(largelList)
val pairs = wordsRdd.map(c => (c, 1))
.groupByKey ()
.dependencies
// pairs: Seqlorg.apache.spark.Dependency[_]] =
// List(org.apache.spark.ShuffleDependency@4294a23d)



How can | find out?

toDebugString method on RDDs.

toDebugString prints out a visualization of the RDD’s lineage, and other
information pertinent to scheduling. For example, indentations in the output
separate groups of narrow transformations that may be pipelined together with
wide transformations that require shuffles. These groupings are called stages.

val wordsRdd = sc.parallelize(largelist)
val pairs = wordsRdd.map(c => (c, 1))
.groupByKey ()
. toDebugString
//pairs: String =
//(8) ShuffledRDD[219] at groupByKey at <console>:38 []
// +-(8) MapPartitionsRDD[218] at map at <console>:37 []
// | ParallelCollectionRDD[217] at parallelize at <console>:36 []
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functional transformations on this immutable data.

» A function for computing the dataset based on its parent RDDs also
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Along with keeping track of dependency information between
partitions as well, this allows us to:

Recover from failures by recomputing lost partitions from lineage graphs.
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