Optimizing with Partitioners Big Data Analysis with Scala and Spark Heather Miller #### Optimizing with Partitioners We saw in the last session that Spark makes a few kinds of partitioners available out-of-the-box to users: - hash partitioners and - range partitioners. We also learned what kinds of operations may introduce new partitioners, or which may discard custom partitioners. However, we haven't covered *why* someone would want to repartition their data. ## Optimizing with Partitioners We saw in the last session that Spark makes a few kinds of partitioners available out-of-the-box to users: - hash partitioners and - range partitioners. We also learned what kinds of operations may introduce new partitioners, or which may discard custom partitioners. However, we haven't covered *why* someone would want to repartition their data. Partitioning can bring substantial performance gains, especially in the face of shuffles. Using range partitioners we can optimize our earlier use of reduceByKey so that it does not involve any shuffling over the network at all! Using range partitioners we can optimize our earlier use of reduceByKey so that it does not involve any shuffling over the network at all! ``` val pairs = purchasesRdd.map(p => (p.customerId, p.price)) val tunedPartitioner = new RangePartitioner(8, pairs) val partitioned = pairs.partitionBy(tunedPartitioner) .persist() val purchasesPerCust = partitioned.map(p \Rightarrow (p._1, (1, p._2))) val purchasesPerMonth = purchasesPerCust .reduceByKey((v1, v2) \Rightarrow (v1._1 + v2._1, v1._2 + v2._2)) .collect() ``` #### On the range partitioned data: #### On the range partitioned data: #### From pages 61-64 of the Learning Spark book Consider an application that keeps a large table of user information in memory: ▶ userData - **BIG**, containing (UserID, UserInfo) pairs, where UserInfo contains a list of topics the user is subscribed to. The application periodically combines this **big** table with a smaller file representing events that happened in the past five minutes. events – small, containing (UserID, LinkInfo) pairs for users who have clicked a link on a website in those five minutes: For example, we may wish to count how many users visited a link that was not to one of their subscribed topics. We can perform this combination with Spark's join operation, which can be used to group the UserInfo and LinkInfo pairs for each UserID by key. From pages 61-64 of the Learning Spark book ``` val sc = new SparkContext(...) val userData = sc.sequenceFile[UserID, UserInfo]("hdfs://...").persist() def processNewLogs(logFileName: String) { val events = sc.sequenceFile[UserID, LinkInfo](logFileName) val joined = userData.join(events) //RDD of (UserID, (UserInfo, LinkInfo)) val offTopicVisits = joined.filter { case (userId, (userInfo, linkInfo)) => // Expand the tuple !userInfo.topics.contains(linkInfo.topic) }.count() println("Number of visits to non-subscribed topics: " + offTopicVisits) Is this OK? ``` From pages 61-64 of the Learning Spark book #### It will be very inefficient! Why? The join operation, called each time processNewLogs is invoked, does not know anything about how the keys are partitioned in the datasets. By default, this operation will hash all the keys of both datasets, sending elements with the same key hash across the network to the same machine, and then join together the elements with the same key on that machine. **Even though userData doesn't change!** Fixing this is easy. Just use partitionBy on the **big** userData RDD at the start of the program! Fixing this is easy. Just use partitionBy on the **big** userData RDD at the start of the program! Therefore, userData becomes: Since we called partitionBy when building userData, Spark will now know that it is hash-partitioned, and calls to join on it will take advantage of this information. In particular, when we call userData.join(events), Spark will shuffle only the events RDD, sending events with each particular UserID to the machine that contains the corresponding hash partition of userData. Or, shown visually: Now that userData is pre-partitioned, Spark will shuffle only the events RDD, sending events with each particular UserID to the machine that contains the corresponding hash partition of userData. Recall our example using groupByKey: Recall our example using groupByKey: Grouping all values of key-value pairs with the same key requires collecting all key-value pairs with the same key on the same machine. Recall our example using groupByKey: Grouping all values of key-value pairs with the same key requires collecting all key-value pairs with the same key on the same machine. Grouping is done using a hash partitioner with default parameters. Recall our example using groupByKey: Grouping all values of key-value pairs with the same key requires collecting all key-value pairs with the same key on the same machine. Grouping is done using a hash partitioner with default parameters. The result RDD, purchasesPerCust, is configured to use the hash partitioner that was used to construct it. #### How do I know a shuffle will occur? **Rule of thumb:** a shuffle *can* occur when the resulting RDD depends on other elements from the same RDD or another RDD. #### How do I know a shuffle will occur? **Rule of thumb:** a shuffle *can* occur when the resulting RDD depends on other elements from the same RDD or another RDD. Note: sometimes one can be clever and avoid much or all network communication while still using an operation like join via smart partitioning #### How do I know a shuffle will occur? #### You can also figure out whether a shuffle has been planned/executed via: 1. The return type of certain transformations, e.g., ``` org.apache.spark.rdd.RDD[(String, Int)] = ShuffledRDD[366] ``` 2. Using function toDebugString to see its execution plan: ## Operations that might cause a shuffle - cogroup - groupWith - join - ► leftOuterJoin - rightOuterJoin - groupByKey - reduceByKey - combineByKey - distinct - intersection - repartition - coalesce ## Avoiding a Network Shuffle By Partitioning There are a few ways to use operations that *might* cause a shuffle and to still avoid much or all network shuffling. Can you think of an example? ## Avoiding a Network Shuffle By Partitioning There are a few ways to use operations that *might* cause a shuffle and to still avoid much or all network shuffling. Can you think of an example? #### 2 Examples: - 1. reduceByKey running on a pre-partitioned RDD will cause the values to be computed *locally*, requiring only the final reduced value has to be sent from the worker to the driver. - 2. join called on two RDDs that are pre-partitioned with the same partitioner and cached on the same machine will cause the join to be computed *locally*, with no shuffling across the network. ## Shuffles Happen: Key Takeaways # How your data is organized on the cluster, and what operations you're doing with it matters! We've seen speedups of 10x on small examples just by trying to ensure that data is not transmitted over the network to other machines. This can hugely affect your day job if you're trying to run a job that should run in 4 hours, but due to a missed opportunity to partition data or optimize away a shuffle, it could take **40 hours** instead.