
Optimizing with Partitioners

Big Data Analysis with Scala and Spark

Heather Miller

Optimizing with Partitioners

We saw in the last session that Spark makes a few kinds of partitioners

available out-of-the-box to users:

...,. hash partitioners and

...,. range partitioners.

We also learned what kinds of operations may introduce new partitioners,

or which may discard custom partitioners.

However, we haven't covered why someone would want to repartition their

data.

Optimizing with Partitioners

We saw in the last session that Spark makes a few kinds of partitioners

available out-of-the-box to users:

...,. hash partitioners and

...,. range partitioners.

We also learned what kinds of operations may introduce new partitioners,

or which may discard custom partitioners.

However, we haven't covered why someone would want to repartition their

data.

Partitioning can bring substantial performance gains, especially in

the face of shuffles.

Optimization using range partitioning

Using range partitioners we can optimize our earlier use of reduceByKey so

that it does not involve any shuffling over the network at all!

Optimization using range partitioning

Using range partitioners we can optimize our earlier use of reduceByKey so

that it does not involve any shuffling over the network at all!

val pairs = purchasesRdd.map(p => (p.customerld, p.price))

val tunedPartitioner = new RangePartitioner(8, pairs)

val partitioned = pairs.partitionBy(tunedPartitioner)

.persist()

val purchasesPerCust =

partitioned.map(p => (p._1, (1, p._2)))

val purchasesPerMonth = purchasesPerCust

.reduceByKey((v1, v2) => (v1._1 + v2._1, v1._2 + v2._2))

.collect()

Optimization using range partitioning

> val purchasesPerMonthSlowLarge = purchasesRddLarge.map(p => (p.customerld, p.price))
.groupByKey()

purchasesPerMonthSlowLarge: Long - 100000

(command took 15.48s)

.map(p => (p._1, (p._2.size, p._2.sum)))

.count()

> �al purchasesPerMonthFastLarge = purchasesRddLarge.map(p => (p.customerld, (1, p.price)))
.reduceByKey({vl, v2) => (vl._1 + v2._1, vl._2 + v2._2))
.count()

purchasesPerMonthFastLarge: Long - 100000

(command took 4.6ss)

On the range partitioned data:
> val purchasesPerMonthFasterLarge = partitioned.map(x => x)J

purchasesPerMonthFasterLarge: Long= 100000

(command took 1.79s)

.reduceByKey((vl, v2) => (vl._1 + v2._1, vl. 2 + v2._2))

. count ()

Optimization using range partitioning

> val purchasesPerMonthSlowLarge = purchasesRddLarge.map(p => (p.customerld, p.price))
.groupByKey()

purchasesPerMonthSlowLarge: Long - 100000

(command took 15.48s)

.map(p => (p._1, (p._2.size, p._2.sum)))

.count()

> �al purchasesPerMonthFastLarge = purchasesRddLarge.map(p => (p.customerld, (1, p.price)))
.reduceByKey({vl, v2) => (vl._1 + v2._1, vl._2 + v2._2))
.count()

purchasesPerMonthFastLarge: Long - 100000

(command took 4.6ss)

On the range partitioned data:
> val purchasesPerMonthFasterLarge = partitioned.map(x => x)J

purchasesPerMonthFasterLarge: Long= 100000

.reduceByKey((vl, v2) => (vl._1 + v2._1, vl. 2 + v2._2))

. count ()

I Command took 1. 79s) almost Q 9x speedup over
purchasePerMonthSlowlarge!

Partitioning Data: parti tionBy, Another Example

From pages 61-64 of the Learning Spark book

Consider an application that keeps a large table of user information in

memory:

...,. userData - BIG, containing (User ID, User Info) pairs, where User Info

contains a list of topics the user is subscribed to.

The application periodically combines this big table with a smaller file

representing events that happened in the past five minutes .

...,. events - small, containing (UserID, Linklnfo) pairs for users who

have clicked a link on a website in those five minutes:

For example, we may wish to count how many users visited a link that was

not to one of their subscribed topics. We can perform this combination

with Spark's join operation, which can be used to group the Userlnfo and

Linklnfo pairs for each UserID by key.

Partitioning Data: parti tionBy, Another Example

From pages 61-64 of the Learning Spark book

val sc = new SparkContext(...)

val userData = sc.sequenceFile[UserID, Userlnfo]("hdfs:// ... ").persist()

def processNewlogs(logFileName: String) {

val events = sc.sequenceFile[UserID, Linklnfo](logFileName)

val joined = userData.join(events) //ROD of (UserID, (Userlnfo, Linklnfo))

val offTopicVisits = joined.filter {

case (userld, (userlnfo, linklnfo)) => //Expand the tuple

!userlnfo.topics.contains(linklnfo.topic)

}.count()

println(''Number of visits to non-subscribed topics: '' + offTopicVisi ts)

}

Is this OK?

Partitioning Data: parti tionBy, Another Example

From pages 61-64 of the Learning Spark book

It will be very inefficient!

Why? The join operation, called each time processNewLogs is invoked,

does not know anything about how the keys are partitioned in the datasets.

By default, this operation will hash

all the keys of both datasets,

sending elements with the same key

hash across the network to the

same machine, and then join

together the elements with the

same key on that machine. Even

though userData doesn't

change!

userData

•

•

•

joined

•

•

•

events

•

•

•

network communication

Partitioning Data: parti tionBy, Another Example

Fixing this is easy. Just use parti tionBy on the big userData RDD at the

start of the program!

Partitioning Data: parti tionBy, Another Example

Fixing this is easy. Just use parti tionBy on the big userData RDD at the

start of the program!

Therefore, userData becomes:

val userData = sc.sequenceFile[UserID, Userlnfo]("hdfs:// ... ")

.partitionBy(new HashPartitioner(100)) // Create 100 partitions

.persist()

Since we called parti tionBy when building userData, Spark will now know

that it is hash-partitioned, and calls to join on it will take advantage of

this information.

In particular, when we call userData.join(events), Spark will shuffle only

the events ROD, sending events with each particular UserID to the

machine that contains the corresponding hash partition of userData.

Partitioning Data: parti tionBy, Another Example

Or, shown visually:

userData

,.. ,

•

•

•

,.. ,

...i

"' -

-

"' -

"' -

jo ined events

•

•

•

•

•

•

network communication

- - - - - ----•

llocal reference

Now that userData is pre-partitioned, Spark will shuffle only the events

RDD, sending events with each particular UserID to the machine that

contains the corresponding hash partition of userData.

Back to shuffling

Recall our example using groupByKey:

val purchasesPerCust =

purchasesRdd.map(p => (p.customerld, p.price)) // Pair RDD

.groupByKey()

Back to shuffling

Recall our example using groupByKey:

val purchasesPerCust =

purchasesRdd.map(p => (p.customerld, p.price)) // Pair RDD

.groupByKey()

Grouping all values of key-value pairs with the same key requires collecting

all key-value pairs with the same key on the same machine.

Back to shuffling

Recall our example using groupByKey:

val purchasesPerCust =

purchasesRdd.map(p => (p.customerld, p.price)) // Pair RDD

.groupByKey()

Grouping all values of key-value pairs with the same key requires collecting

all key-value pairs with the same key on the same machine.

Grouping is done using a hash partitioner with default parameters.

Back to shuffling

Recall our example using groupByKey:

val purchasesPerCust =

purchasesRdd.map(p => (p.customerld, p.price)) // Pair RDD

.groupByKey()

Grouping all values of key-value pairs with the same key requires collecting

all key-value pairs with the same key on the same machine.

Grouping is done using a hash partitioner with default parameters.

The result RDD, purchasesPerCust, is configured to use the hash

partitioner that was used to construct it.

How do I know a shuffle will occur?

Rule of thumb: a shuffle can occur when the resulting RDD depends on

other elements from the same RDD or another RDD.

How do I know a shuffle will occur?

Rule of thumb: a shuffle can occur when the resulting RDD depends on

other elements from the same RDD or another RDD.

Note: sometimes one can be clever and avoid much or all network

communication while still using an operation like join via smart

partitioning

How do I know a shuffle will occur?

You can also figure out whether a shuffle has been planned/executed via:

1. The return type of certain transformations, e.g.,

org.apache.spark.rdd.RDD[(String, Int)]= ShuffledRDD[l3661J

2. Using function toDebugString to see its execution plan:

partitioned.reduceByKey((v1, v2) => (v1 ._1 + v2._1, v1 ._2 + v2._2))
.toDebugString

res9: String=

(8) MapPartitionsRDD[l6221J at reduceByKey at <console>:49 []
I ShuffledRDD[l6151J at partitionBy at <console>:48 []

CachedPartitions: �; MemorySize: 117541-� MB; DiskSize: �-� B

Operations that might cause a shuffle

-.... cogroup

-.... groupWi th

-.... join

-.... leftOuter Join

-.... rightOuterJoin

-.... groupByKey

..,. reduceByKey

..,. combineByKey

-.... distinct

-.... intersection

-.... repartition

-.... coalesce

Avoiding a Network Shuffle By Partitioning

There are a few ways to use operations that might cause a shuffle and to

still avoid much or all network shuffling.

Can you think of an example?

Avoiding a Network Shuffle By Partitioning

There are a few ways to use operations that might cause a shuffle and to

still avoid much or all network shuffling.

Can you think of an example?

2 Examples:

1. reduceByKey running on a pre-partitioned ROD will cause the values

to be computed locally, requiring only the final reduced value has to

be sent from the worker to the driver.

2. join called on two RDDs that are pre-partitioned with the same

partitioner and cached on the same machine will cause the join to be

computed locally, with no shuffling across the network.

Shuffles Happen: Key Takeaways

How your data is organized on the cluster, and what operations

you're doing with it matters!

We've seen speedups of lOx on small examples just by trying to ensure

that data is not transmitted over the network to other machines.

This can hugely affect your day job if you're trying to run a job that

should run in 4 hours, but due to a missed opportunity to partition data or

optimize away a shuffle, it could take 40 hours instead.

