
Joins

Big Data Analysis with Scala and Spark

Heather Miller

Joins

Joins are another sort of transformation on Pair RDDs. They're used to
combine multiple datasets They are one of the most commonly-used
operations on Pair RDDs!

There are two kinds of joins:

..,. Inner joins (join)

..,. Outer joins (left0uterJoin/right0uterJoin)

rJ..,1. I
The key difference between the two is what happens to the keys w en
both RDDs don't contain the same key.

For example, if I were to join two RDDs containing different customerIDs
(the key), the difference between inner/outer joins is what happens to
customers whose IDs don't exist in both RDDs.

Example Dataset ...

Example: Let's pretend the Swiss Rail company, CFF, has two datasets.
One RDD representing customers and their subscriptions (abos), and
another representing customers and cities they frequently travel to
(locations). **(E.g., gathered from CFF smartphone app.)

Let's assume the following concrete data:

val as= List((101, ("Ruetli", AG)), (102, ("Brelaz", DemiTarif)),
(103, ("Gress", Demi Tari fVi sa)), (104, ("Sc hat ten", Demi Tari f)))

val abos = sc.parallelize(as)

val ls= List((101, "Bern"), (101, "Thun"), (102, "Lausanne"), (102, "Geneve"),
(102, "Nyon"), (103, "Zurich"), (103, "St-Gallen"), (103, "Chur"))

vals locations = sc.parallelize(ls)

Example Dataset ... (2)

Example: Let's pretend the C F F has two datasets. One RDD representing
customers and their subscriptions (abos), and another representing
customers and cities they frequently travel to (locations). (E.g., gathered
from C F F smartphone app.)

Let's assume the following concrete data: (visualized)

abos

(101, ("Ruetli", AG)),

(102, ("Brelaz", Demi Tari f)),

(103, ("Gress", Demi Tari fVisa)),

(104, ("Schatten", DemiTarif))

customer# lastName kindOfAbo

locations

(101, "Bern"),

(101, "Thun"),

(102, "Lausanne"),

(102, "Geneve") ,

(102, "Nyon") ,

(103, "Zurich"),

(103, "St-Gallen"),

(103, "Chur")

j l j I

customer# frequentCity

Example Dataset ... (3)

Example: Let's pretend the C F F has two datasets. One RDD representing
customers and their subscriptions (abos), and another representing
customers and cities they frequently travel to (locations). (E.g., gathered
from C F F smartphone app.)

Let's assume the following concrete data: (visualized)

abos

(101, ("Ruetli", AG)),

(102, ("Brelaz", DemiTarif)),

(103, ("Gress", Demi Tari fVisa)),

(104, ("Schatten", DemiTarif))

j l

This kind of data comes from

CFF's databse of subscriptions

This kind of data comes from individual

purchases from the app (i.e., to use the

app, you don't need an AG)

locations

(101 , "Bern"),

(101 , "Thun"),

(102, "Lausanne"),

(102, "Geneve"),

(102, "Nyon"),

(103, "Zurich"),

(103, "St-Gallen"),

(103, "Chur")

Inner Joins (join)

Inner joins return a new RDD containing combined pairs whose keys are
present in both input RDDs.

def join[WJ(other: RDD[(K, W)J): RDD[(K, (V, W))J

Example: Let's pretend the C F F has two datasets. One RDD representing
customers and their subscriptions (abos), and another representing
customers and cities they frequently travel to (locations). (E.g., gathered
from C F F smartphone app.)

How do we combine only customers that have a subscription and where
there is location info?

val abos = ... // RDD[(Int, (String, Abonnement))J
val locations= ... // RDD[(Int, String)]

val trackedCustomers = ???

Inner Joins (join)

Example: Let's pretend the C F F has two datasets. One RDD representing
customers and their subscriptions (abos), and another representing
customers and cities they frequently travel to (locations). (E.g., gathered
from C F F smartphone app.)

How do we combine only customers that have a subscription and where
there is location info?

val abos = ... // RDD[(Int, (String, Abonnement))J
val locations= ... // RDD[(Int, String)]

Inner Joins (join)

Example continued with concrete data:

abos locations

(101 , ("Ruetli", AG)), (101 , "Bern"),

(102, ("Brelaz", DemiTarif)), (101 , "Thun"),

(103, ("Gress", DemiTarifVisa)), (102, "Lausanne"),
(104, ("Schatten", DemiTarif)) (102, "Geneve"),

(102, "Nyon"),

(103, "Zurich"),

(103, "St-Gallen"),

(103, "Chur")

val trackedCustomers = abos.join(locations)

// trackedCustomers: RDD[(Int, ((String, Abonnement) , String))]

Inner Joins (join)

Example continued with concrete data:

abos

(101, ("Ruetli", AG)),

(102, ("Brelaz", DemiTarif)),

(103, ("Gress", Demi Tari fVisa)),

(104, ("Schatten", DemiTarif))

We want to combine both RDDs into one:

How do we combine only customers that

have a subscription and where there is

location info?

locations

(101 , "Bern"),

(101 , "Thun"),

(102, "Lausanne"),

(102, "Geneve"),

(102, "Nyon"),

(103, "Zurich"),

(103, "St-Gallen"),

(103, "Chur")

Inner Joins (join)

Example continued with concrete data:

abos

(101, ("Ruetli", AG)),

(102, ("Brelaz", DemiTarif)),

(103, ("Gress", Demi Tari fVisa)),

(104, ("Schatten", DemiTarif))

We want to make a new RDD with only these!

locations

(101, "Bern"),

(101, "Thun"),

(102, "Lausanne"),

(102, "Geneve"),

(102, "Nyon") ,

(103, "Zurich"),

(103, "St-Gallen"),

(103, "Chur")

Inner Joins (join)

Example continued with concrete data:

trackedCustomers

(101, ((Ruetli, AG), Bern))

(101, ((Ruetli, AG), Thun))

(102, ((Brelaz, DemiTarif), Nyon))

(102, ((Brelaz, DemiTarif), Lausanne))

(102, ((Brelaz, DemiTarif), Geneve))

(103, ((Gress, DemiTarifVisa), St-Gallen))

(103, ((Gress, DemiTarifVisa), Chur))

(103, ((Gress, DemiTarifVisa), Zurich))

�t-t--t--t--
customer# lastName kindOfAbo frequentCity

val trackedCustomers = abos.join(locations)

// trackedCustomers: RDD[(Int, ((String, Abonnement) , String))]

Inner Joins (join)

Example continued with concrete data:

trackedCustomers.collect() .foreach(println)

// (101, ((Ruetli, AG) , Bern))

// (101, ((Ruetli, AG) , Thun))

// (102, ((Brelaz, DemiTarif) , Nyon))

// (102, ((Brelaz, DemiTarif) , Lausanne))

// (102, ((Brelaz, DemiTarif) , Geneve))

// (103, ((Gress, DemiTarifVisa) , St-Gallen))

// (103, ((Gress, DemiTarifVisa) , Chur))

// (103, ((Gress, DemiTarifVisa) , Zurich))

What happened to customer 104?

Inner Joins (join)

Example continued with concrete data:

trackedCustomers.collect() .foreach(println)

// (101, ((Ruetli, AG) , Bern))

// (101, ((Ruetli, AG) , Thun))

// (102, ((Brelaz, DemiTarif) , Nyon))

// (102, ((Brelaz, DemiTarif) , Lausanne))

// (102, ((Brelaz, DemiTarif) , Geneve))

// (103, ((Gress, DemiTarifVisa) , St-Gallen))

// (103, ((Gress, DemiTarifVisa) , Chur))

// (103, ((Gress, DemiTarifVisa) , Zurich))

What happened to customer 104?

Customer 104 does not occur in the result, because there is no location
data for this customer Remember, inner joins require keys to occur in both

source RDDs (i.e. , we must have location info).

Outer Joins (leftOuterJoin, rightOuterJoin)

Outer joins return a new RDD containing combined pairs whose keys don't have
to be present in both input RD Ds.

Outer joins are particularly useful for customizing how the resulting joined RDD
deals with missing keys. With outer joins, we can decide which RDD's keys are
most essential to keep-the left, or the right RDD in the join expression.

def leftOuterJoin[W](other: RDD[(K, W)]): RDD[(K, (V, Option[W]))J

def rightOuterJoin[WJ(other: RDD[(K, W)]): RDD[(K, (Option[V], W))J

(Notice the insertion and position of the Option!)

Example: Let's assume the CFF wants to know for which subscribers the CFF
has managed to collect location information. E.g., it's possible that someone has
a demi-tarif, but doesn't use the CFF app and only pays cash for tickets.

Which join do we use?

Outer Joins (leftOuterJoin, rightOuterJoin)

Example continued with concrete data:

abos

(101, ("Ruetli", AG)),

(102, ("Brelaz", DemiTarif)),

(103, ("Gress", DemiTarifVisa)),

(104, ("Schatten", DemiTarif))

We want to combine both RDDs into one:

The CFF wants to know for which subscribers
the CFF has managed to collect location
information. E.g., it's possible that someone
has a demi-tarif, but doesn't use the CFF app
and only pays cash for tickets.

val abosWithOptionallocations = ???
• • •

locations

(101 , "Bern"),

(101 , "Thun"),

(102, "Lausanne"),

(102, "Geneve"),

(102, "Nyon"),

(103, "Zurich"),

(103, "St-Gallen"),

(103, "Chur")

Outer Joins (leftOuterJoin, rightOuterJoin)

Example: Let's assume the C F F wants to know for which subscribers the
C F F has managed to collect location information. E.g. , it's possible that
someone has a demi-tarif, but doesn't use the C F F app and only pays cash
for tickets.

Which join do we use?

val abosWithOptionalLocations = ???

Outer Joins (leftOuterJoin, rightOuterJoin)

Example continued with concrete data:

abos

(101 , ("Ruetli", AG)),

(102, ("Brelaz", DemiTarif)),

(103, ("Gress", DemiTarifVisa)),

(104, ("Schatten", DemiTarif))

We want to make a new RDD with these!

val abosWithOptionallocations = ???
• • •

locations

(101 , "Bern"),

(101 , "Thun"),

(102, "Lausanne"),

(102, "Geneve"),

(102, "Nyon"),

(103, "Zurich"),

(103, "St-Gallen"),

(103, "Chur")

Outer Joins (leftOuterJoin, rightOuterJoin)

Example: Let's assume the C F F wants to know for which subscribers the
C F F has managed to collect location information. E.g. , it's possible that
someone has a demi-tarif, but doesn't use the C F F app and only pays cash
for tickets.

Which join do we use?

val abosWithOptionalLocations = abos.leftOuterJoin(locations)

// abosWithOptionallocations: RDD[(Int, ((String, Abonnement) , Option[String])) J

Outer Joins (leftOuterJoin, rightOuterJoin)

Example continued with concrete data:

abosWithOptionallocations
------�

(101 , ((Ruetli, AG), Some (Thun)))

(101 , ((Ruetli, AG), Some (Bern)))

(102, ((Brelaz, DemiTarif), Some(Geneve)))

(102, ((Brelaz, DemiTarif), Some (Nyon)))

(102, ((Brelaz, DemiTarif), Some (Lausanne)))

(103, ((Gress, DemiTarifVisa), Some (Zurich)))

(103, ((Gress, DemiTarifVisa), Some (St-Gallen)))

(103, ((Gress, DemiTarifVisa), Some (Chur)))

(104, ((Schatten, DemiTarif), None))

t t t t
customer# lastName kindOfAbo Option[frequentCity]

val abosWithOptionallocations = abos.leftOuterJoin(locations)

// abosWithOptionallocations: RDD[(Int, ((String, Abonnement) , Option[String])) J

Outer Joins (leftOuterJoin, rightOuterJoin)

Example continued with concrete data:

val abosWithOptionallocations = abos.leftOuterJoin(locations)

abosWithOptionallocations.collect().foreach(println)

II (101,((Ruetli,AG),Some(Thun)))

II (101,((Ruetli,AG),Some(Bern)))

II (102,((Brelaz,DemiTarif),Some(Geneve)))

II (102,((Brelaz,DemiTarif),Some(Nyon)))

II (102,((Brelaz,DemiTarif),Some(Lausanne)))

II (103,((Gress,DemiTarifVisa),Some(Zurich)))

II (103,((Gress,DemiTarifVisa),Some(St-Gallen)))

II (103,((Gress,DemiTarifVisa),Some(Chur)))

II (104,((Schatten,DemiTarif),None))

Since we use a leftOuterJoin, keys are guaranteed to occur in the left source
ROD. Therefore, in this case, we see customer 104 because that customer has a
demi-tarif (the left ROD in the join) .

Outer Joins (leftOuterJoin, rightOuterJoin)

We can do the converse using a rightOuter Join.

abos

(101, ("Ruetli", AG)),

(102, ("Brelaz", DemiTarif)),

(103, ("Gress", DemiTarifVisa)),

(104, ("Schatten", DemiTarif))

We want to combine both RDDs into one:

The CFF wants to know for which customers
(smartphone app users) it has subscriptions for.
E.g., it's possible that someone uses the mobile
app, but has no demi-tarif.

(101 ,

(101 ,

(102,

(102,

(102,

(103,

(103,

(103,

locations

"Bern"),

"Thun"),

"Lausanne"),

"Geneve"),

"Nyon"),

"Zurich"),

"St-Gallen"),

"Chur")

val customersWithlocationDataAndOptionalAbos = ???
• • •

Outer Joins (leftOuterJoin, rightOuterJoin)

We can do the converse using a rightOuter Join.

abos

(101, ("Ruetli", AG)),

(102, ("Brelaz", DemiTarif)),

(103, ("Gress", DemiTarifVisa)),

(104, ("Schatten", DemiTarif))

We want to make a new RDD with only these!

locations

(1 01 , "Bern") ,

(101 , "Thun"),

(102, "Lausanne"),

(102, "Geneve"),

(102, "Nyon") ,

(103, "Zurich"),

(103, "St-Gallen"),

(103, "Chur")

val customersWithlocationDataAndOptionalAbos = ???
• • •

Outer Joins (leftOuterJoin, rightOuterJoin)

We can do the converse using a rightOuter Join.

Example: Let's assume in this case, the C F F wants to know for which
customers (smartphone app users) it has subscriptions for. E.g. , it's
possible that someone uses the mobile app, but has no demi-tarif.

val customersWithLocationDataAndOptionalAbos =
abos.rightOuterJoin(locations)

// RDD[(Int, (Option[(String, Abonnement)J, String))]

Outer Joins (leftOuterJoin, rightOuterJoin)

Example continued with concrete data:

customersWithlocationDataAndOptionalAbos

(101, (Some ((Ruetli, AG)), Bern))

(101 , (Some ((Ruetli, AG)), Thun))

(102, (Some ((Brelaz, DemiTarif)), Lausanne))

(102, (Some ((Brelaz, DemiTarif)), Geneve))

(102, (Some ((Brelaz, DemiTarif)), Nyon))

(103, (Some ((Gress, DemiTarifVisa)), Zurich))

(103, (Some ((Gress, DemiTarifVisa)), St-Gallen))

(103, (Some ((Gress, DemiTarifVisa)), Chur))

t t t t
customer# Option[(lastName, kindOfAbo)J frequentCity

val customersWithlocationDataAndOptionalAbos =

abos.rightOuterJoin(locations)

// RDD[(Int, (Option[(String, Abonnement) J , String))]

•

Outer Joins (leftOuterJoin, rightOuterJoin)

Example continued with concrete data:

val customersWithlocationDataAndOptionalAbos =

abos.rightOuterJoin(locations)

II RDD[(Int, (Option[(String, Abonnement)J, String))]

customersWithlocationDataAndOptionalAbos.collect().foreach(println)

II (101 ,(Some((Ruetli,AG)),Bern))

II (101 ,(Some((Ruetli,AG)),Thun))

II (102,(Some((Brelaz,DemiTarif)),Lausanne))

II (102,(Some((Brelaz,DemiTarif)),Geneve))

II (102,(Some((Brelaz,DemiTarif)),Nyon))

II (103,(Some((Gress,DemiTarifVisa)),Zurich))

II (103,(Some((Gress,DemiTarifVisa)),St-Gallen))

II (103,(Some((Gress,DemiTarifVisa)),Chur))

Note that, here, customer 104 disappears again because that customer doesn't have
location info stored with the CFF {the right ROD in the join).

?? org.apache.spark.rdd.RDD[(String, Int)]= ShuffledRDD[366] ??

Think again what happens when you have to do a groupBy or a

groupByKey. Remember our data is distributed!

?? org.apache.spark.rdd.RDD[(String, Int)]= ShuffledRDD[366] ??

Think again what happens when you have to do a groupBy or a
groupByKey. Remember our data is distributed!

We typically have to move data from one node to another to be "grouped
with" its key. Doing this is called ''shuffling".

?? org.apache.spark.rdd.RDD[(String, Int)]= ShuffledRDD[366] ??

Think again what happens when you have to do a groupBy or a
groupByKey. Remember our data is distributed!

We typically have to move data from one node to another to be "grouped
with" its key. Doing this is called ''shuffling".

Shuffles Happen

Shuffles can be an enormous hit to because it means that Spark must send
data from one node to another. Why? Latency!

We'll talk more about these in the next lecture.

