




�



Distributed Key-Value Pairs

MapReduce: Simplified Data Processing on Large Clusters

Jeffrey Dean and Sanjay Ghemawat

jeff@google.com, sanjay@google.com

Google, Inc.

Abstract

MapReduce is a programming model and an associ-

ated implementation for processing and generating large

data sets. Users specify a map function that processes a

key/value pair to generate a set of intermediate key/value

pairs, and a reduce function that merges all intermediate

values associated with the same intermediate key. Many

real world tasks are expressible in this model, as shown

in the paper.

Programs written in this functional style are automati-

cally parallelized and executed on a large cluster of com-

modity machines. The run-time system takes care of the

details of partitioning the input data, scheduling the pro-

given day, etc. Most such computations are conceptu-

ally straightforward. However, the input data is usually

large and the computations have to be distributed across

hundreds or thousands of machines in order to finish in

a reasonable amount of time. The issues of how to par-

allelize the computation, distribute the data, and handle

failures conspire to obscure the original simple compu-

tation with large amounts of complex code to deal with

these issues.

As a reaction to this complexity, we designed a new

abstraction that allows us to express the simple computa-

tions we were trying to perform but hides the messy de-

tails of parallelization, fault-tolerance, data distribution

and load balancing in a library. Our abstraction is in-

(2004 research paper)



Distributed Key-Value Pairs

Abstract

MapReduce is a programming model and an associ-

ated implementation for processing and generating large

data sets. Users specify a map function that processes a

key/value pair to generate a set of intermediate key/value

pairs, and a reduce function that merges all intermediate

values associated with the same intermediate key. Many

real world tasks are expressible in this model, as shown

in the paper.

Programs written in this functional style are automati-

cally parallelized and executed on a large cluster of com-

modity machines. The run-time system takes care of the

details of partitioning the input data, scheduling the pro-

gram’s execution across a set of machines, handling ma-

chine failures, and managing the required inter-machine

communication. This allows programmers without any

experience with parallel and distributed systems to eas-

ily utilize the resources of a large distributed system.

Our implementation of MapReduce runs on a large

cluster of commodity machines and is highly scalable:

a typical MapReduce computation processes many ter-

abytes of data on thousands of machines. Programmers

find the system easy to use: hundreds ofMapReduce pro-

grams have been implemented and upwards of one thou-

sand MapReduce jobs are executed on Google’s clusters

every day.

given day, etc. Most such computations are conceptu-

ally straightforward. However, the input data is usually

large and the computations have to be distributed across

hundreds or thousands of machines in order to finish in

a reasonable amount of time. The issues of how to par-

allelize the computation, distribute the data, and handle

failures conspire to obscure the original simple compu-

tation with large amounts of complex code to deal with

these issues.

As a reaction to this complexity, we designed a new

abstraction that allows us to express the simple computa-

tions we were trying to perform but hides the messy de-

tails of parallelization, fault-tolerance, data distribution

and load balancing in a library. Our abstraction is in-

spired by the map and reduce primitives present in Lisp

and many other functional languages. We realized that

most of our computations involved applying a map op-

eration to each logical “record” in our input in order to

compute a set of intermediate key/value pairs, and then

applying a reduce operation to all the values that shared

the same key, in order to combine the derived data ap-

propriately. Our use of a functional model with user-

specified map and reduce operations allows us to paral-

lelize large computations easily and to use re-execution

as the primary mechanism for fault tolerance.

The major contributions of this work are a simple and

powerful interface that enables automatic parallelization

and distribution of large-scale computations, combined

(2004 research paper)





String Property

case class : String : String : String





K V



def : RDD K Iterable V

def : V V => : RDD K V

def W : RDD K W : RDD K V W



val : RDD WikipediaPage =

val =



val : RDD WikipediaPage =

val = =>


