Distributed Key-Value Pairs (Pair RDDs)

Big Data Analysis with Scala and Spark
Heather Miller



Distributed Key-Value Pairs

In single-node Scala, key-value pairs can be thought of as maps.
(Or associative arrays or dictionaries in JavaScript or Python)



Distributed Key-Value Pairs

In single-node Scala, key-value pairs can be thought of as maps.
(Or associative arrays or dictionaries in JavaScript or Python)

While maps/dictionaries/etc are available across most languages, they
perhaps aren't the most commonly-used structure in single-node programs.
List /Arrays probably more common.

Most common in world of big data processing:
Operating on data in the form of key-value pairs.

» Manipulating key-value pairs a key choice in design of MapReduce



(2004 research paper)

Distributed Key-Value Pairs

MapReduce: Simplified Data Processing on Large Clusters

Jeffrey Dean and Sanjay Ghemawat

jeff@google.com, sanjay @google.com

Abstract

MapReduce 1s a programming model and an associ-
ated implementation for processing and generating large
data sets. Users specify a map function that processes a
key/value pair to generate a set of intermediate key/value
pairs, and a reduce function that merges all intermediate
values associated with the same intermediate key. Many
real world tasks are expressible in this model, as shown
in the paper.

Programs written in this functional style are automati-
cally parallelized and executed on a large cluster of com-
modity machines. The run-time system takes care of the

AAtaila AT aavtit1ntrtaa~ tIhA 142119t AAata a~riAaAds s iaa ~ A A aven

Google, Inc.

given day, etc. Most such computations are conceptu-
ally straightforward. However, the input data 1s usually
large and the computations have to be distributed across
hundreds or thousands of machines in order to finish in
a reasonable amount of time. The 1ssues of how to par-
allelize the computation, distribute the data, and handle
failures conspire to obscure the original simple compu-
tation with large amounts of complex code to deal with
these 1ssues.

As a reaction to this complexity, we designed a new
abstraction that allows us to express the simple computa-
tions we were trying to perform but hides the messy de-
tails of parallelization, fault-tolerance, data distribution

1 1 1 1 1 i 1°1 7\ 1 4



Distributed Key-Value Pairs

(2004 research paper)

We realized that
most of our computations involved applying a map op-
eration to each logical “record” in our input in order to
compute a set of intermediate key/value pairs, and then
applying a reduce operation to all the values that shared
the same key, in order to combine the derived data ap-
propriately.




Distributed Key-Value Pairs (Pair RDDs)

Large datasets are often made up of unfathomably large
numbers of complex, nested data records.

To be able to work with such datasets, it's often desirable to
project down these complex datatypes into key-value pairs.



Distributed Key-Value Pairs (Pair RDDs)

{

?definitions”:{
?firstname”:”string”,
”lastname”:”string”,
”address” : {

”type”:”object”,
“properties”:{
”street_address” : {
”type”:”string”
¥

Pcity”: {
"type”:”string”
3
”state” : {

”type”:”string”
3

¥

"required”: [
”street_address”,
city”,

”state”

Large datasets are often made up of unfathomably large
numbers of complex, nested data records.

To be able to work with such datasets, it's often desirable to
project down these complex datatypes into key-value pairs.

Example:
In the JSON record to the left, it may be desirable to create
an RDD of properties of type:

RDDL(String, Property)] // where ‘String‘ is a key representing a city,
// and ‘Property‘ 1s its corresponding value.

case class Property(street: String, city: String, state: String)

where instances of Properties can be grouped by their
respective cities and represented in a RDD of key-value pairs.



Distributed Key-Value Pairs (Pair RDDs)

Often when working with distributed data, it's useful to organize data into
key-value pairs.

In Spark, distributed key-value pairs are “Pair RDDs.”

Useful because: Pair RDDs allow you to act on each key in parallel or
regroup data across the network.



Distributed Key-Value Pairs (Pair RDDs)

Often when working with distributed data, it's useful to organize data into
key-value pairs.

In Spark, distributed key-value pairs are “Pair RDDs.”

Useful because: Pair RDDs allow you to act on each key in parallel or
regroup data across the network.

Pair RDDs have additional, specialized methods for working with data
associated with keys. RDDs are parameterized by a pair are Pair RDDs.

RDDL(K,V)] // <== treated specially by Spark!



Pair RDDs (Key-Value Pairs)

Key-value pairs are known as Pair RDDs in Spark.

When an RDD is created with a pair as its element type, Spark

automatically adds a number of extra useful additional methods (extension
methods) for such pairs.

Some of the most important extension methods for RDDs containing pairs
(e.g., RDDL(K, V)1) are:

def groupByKey(): RDD[(K, Iterable[V])]
def reduceByKey(func: (V, V) => V): RDD[L(K, V)]
def join[W](other: RDDL(K, W)]): RDD[L(K, (V, W))]



Pair RDDs (Key-Value Pairs)

Creating a Pair RDD
Pair RDDs are most often created from already-existing non-pair RDDs,
for example by using the map operation on RDDs:

val rdd: RDD[WikipediaPage] = ...

val pairRdd = ?7?7?



Pair RDDs (Key-Value Pairs)

Creating a Pair RDD
Pair RDDs are most often created from already-existing non-pair RDDs,
for example by using the map operation on RDDs:

val rdd: RDD[WikipediaPage] = ...

// Has type: org.apache.spark.rdd.RDD[(String, String)]
val pairRdd = rdd.map(page => (page.title, page.text))

Once created, you can now use transformations specific to key-value pairs
such as reduceByKey, groupByKey, and join



