
Reduction Operations

Big Data Analysis with Scala and Spark

Heather Miller

What we've seen so far

_... we defined Distributed Data Parallelism

..., we saw that Apache Spark implements this model

..., we got a feel for what latency means to distributed systems

What we've seen so far

_... we defined Distributed Data Parallelism

..., we saw that Apache Spark implements this model

..., we got a feel for what latency means to distributed systems

Spark's Programming Model

..., We saw that, at a glance, Spark looks like Scala collections

..., However, internally, Spark behaves differently than Scala collections

� Spark uses laziness to save time and memory

_... We saw transformations and actions

..., We saw caching and persistence (i.e., cache in memory, save time!)

..., We saw how the cluster topology comes into the programming model

Transformations to Action s

Most of our intuitions have focused on distributing transformations such

as map, flatMap, filter, etc.

We've visualized how transformations like these are distributed and
parallelized.

Transformations to Action s

Most of our intuitions have focused on distributing transformations such

as map, flatMap, filter, etc.

We've visualized how transformations like these are distributed and
parallelized.

But what about actions? In particular, how are common reduce-like

actions distributed in Spark?

Reduction Operations, Generally

First, what do we mean by "reduction operations"?

Recall operations such as fold, reduce, and aggregate from Scala
sequential collections. All of these operations and their variants (such as
foldleft, reduceRight, etc) have something in common.

Reduction Operations, Generally

First, what do we mean by "reduction operations"?

Recall operations such as fold, reduce, and aggregate from Scala
sequential collections. All of these operations and their variants (such as
foldleft, reduceRight, etc) have something in common.

Reduction Operations:

walk though a collection and combine neigboring elements of the
collection together to produce a single combined result.
(rather than another collection)

Reduction Operations, Generally

Reduction Operations:

walk though a collection and combine neighboring elements of the
collection together to produce a single combined result.
(rather than another collection)

Example:

case class Taco(kind: String, price: Double)

val tacoOrder =

List(

Taco("Carnitas", 2.25),

Taco("Corn", 1 . 75),

Taco("Barbacoa", 2.50),

Taco("Chicken", 2.00))

val cost= tacoOrder.foldleft(0.0)((sum, taco)=> sum + taco.price)

Parallel Reduction Operations

Recall what we learned in the course Parallel Programming course

about foldleft vs fold.

Which of these two were parallelizable?

Parallel Reduction Operations

Recall what we learned in the course Parallel Programming course

about foldleft vs fold.

Which of these two were parallelizable?

f oldleft is not parallelizable.

def foldleft[B](z: B)(f: (B, A)=> B): B

Applies a binary operator to a start value and all elements of this
collection or iterator, going left to right.

A

B

- Scala API documentation

B

Para I lel Reduction Operations: Fold Left

f oldleft is not parallelizable.

def foldleft[B](z: B)(f: (B, A)=> B): B

Being able to change the result type from A to B forces us to have to
execute foldleft sequentially from left to right.

Concretely, given:

val xs = List(1, 2, 3, 4)
val res = xs.foldleft("")((str: String, i: Int)=> str + i)

What happens if we try to break this collection in two and parallelize?

Para I lel Reduction Operations: Fold Left

f oldleft is not parallelizable.

def foldleft[B](z: B)(f: (B, A)=> B): B

val xs = List(1, 2, 3, 4)

val res = xs.foldleft('"')((str: String, i: Int) => str + i) Strir

Lislll> 1.)

\\ ,, -t 3 => � a 9

''O'' + � · => \\�11 ''

Parallel Reduction Operations: Fold

fold enables us to parallelize things, but it restricts us to always returning

the same type.

def fold(z: A)(f: (A, A)=> A): A

A

It enables us to parallelize using a single function f by enabling us

to build parallelizable reduce trees.

Parallel Reduction Operations: Fold

It enables us to parallelize using a single function f by enabling us

to build parallelizable reduce trees.

def fold(z: A)(f: (A, A)=> A): A

I

A

A

��I _J
A A A

Parallel Reduction Operations: Aggregate

Does anyone remember what aggregate does?

Parallel Reduction Operations: Aggregate

Does anyone remember what aggregate does?

aggregate[BJ(z: => B)(seqop: (B, A)=> B, combop: (B, B) => B): B

Parallel Reduction Operations: Aggregate

Does anyone remember what aggregate does?

aggregate[BJ(z: => B)(seqop: (B, A)=> B, combop: (B, B) => B): B

aggregate is said to be general because it gets you the best of both worlds.

Properties of aggregate

1. Parallelizable.

2. Possible to change the return type.

Parallel Reduction Operations: Aggregate

aggregate[BJ(z: => B)(seqop: (B, A)=> B, combop: (B, B) => B): B

I
B

A
� ,___

A
........

,.......A ,_____,)
[]] B B 1

Aggregate lets you still do sequential-style folds in chunks which change
the result type. Additionally requiring the combop function enables building
one of these nice reduce trees that we saw is possible with fold to
combine these chunks in parallel.

Reduction Operations on RDDs

Scala collections:
fold
fold Left/fold Right
reduce
aggregate

Spark:
fold
fold Left/fold RigRt
reduce
aggregate

Reduction Operations on RDDs

Scala collections:
fold
fold Left/fold Right
reduce
aggregate

Spark:
fold
fold Left/fold RigRt
reduce
aggregate

Spark doesn't even give you the option to use foldLeft/foldRight. Which
means that if you have to change the return type of your reduction
operation, your only choice is to use aggregate.

Reduction Operations on RDDs

Scala collections:
fold
fold Left/fold Right
reduce
aggregate

Spark:
fold
fold Left/fold RigRt
reduce
aggregate

Spark doesn't even give you the option to use foldLeft/foldRight. Which
means that if you have to change the return type of your reduction
operation, your only choice is to use aggregate.

Question: Why not still have a serial foldLeft/foldRight on Spark?

Reduction Operations on RDDs

Scala collections:
fold
fold Left/fold Right
reduce
aggregate

Spark:
fold
fold Left/fold RigRt
reduce
aggregate

Spark doesn't even give you the option to use foldLeft/foldRight. Which
means that if you have to change the return type of your reduction
operation, your only choice is to use aggregate.

Question: Why not still have a serial foldLeft/foldRight on Spark?

Doing things serially across a cluster is actually difficult. Lots of
synchronization. Doesn't make a lot of sense.

ROD Reduction Operations: Aggregate

In Spark, aggregate is a more desirable reduction operator a majority of

the time. Why do you think that's the case?

ROD Reduction Operations: Aggregate

In Spark, aggregate is a more desirable reduction operator a majority of

the time. Why do you think that's the case?

().�Si�n�
As you will realize from experimenting with our Spark cluster, much of the

time when working with large-scale data, our goal is to project down
from larger /more complex data types.

ROD Reduction Operations: Aggregate

In Spark, aggregate is a more desirable reduction operator a majority of

the time. Why do you think that's the case?

As you will realize from experimenting with our Spark cluster, much of the

time when working with large-scale data, our goal is to project down
from larger /more complex data types.

Example:

case class WikipediaPage(

title: String,

redirectTitle: String,

timestamp: String,

lastContributorUsername: String,

text: String)

•

ROD Reduction Operations: Aggregate

As you will realize after experimenting with Spark a bit, much of the time

when working with large-scale data, your goal is to project down from
larger/more complex data types.

Example:

case class WikipediaPage(

title: String,

redirectTitle: String,

timestamp: String,

lastContributorUsername: String,

text: String)

I might only care about title and timestamp, for example. In this case, it'd save a lot of
time/memory to not have to carry around the full-text of each article {text) in our
accumulator!

Hence, why accumulate is often more desirable in Spark than in Scala collections!

