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_... we defined Distributed Data Parallelism 

..., we saw that Apache Spark implements this model 

..., we got a feel for what latency means to distributed systems 

Spark's Programming Model 

..., We saw that, at a glance, Spark looks like Scala collections 

..., However, internally, Spark behaves differently than Scala collections 

� Spark uses laziness to save time and memory 

_... We saw transformations and actions 

..., We saw caching and persistence (i.e., cache in memory, save time!) 

..., We saw how the cluster topology comes into the programming model 
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We've visualized how transformations like these are distributed and 
parallelized. 

But what about actions? In particular, how are common reduce-like 

actions distributed in Spark? 
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Reduction Operations, Generally 

Reduction Operations: 

walk though a collection and combine neighboring elements of the 
collection together to produce a single combined result. 
( rather than another collection) 

Example: 

case class Taco(kind: String, price: Double) 

val tacoOrder = 

List( 

Taco("Carnitas", 2.25), 

Taco("Corn", 1 . 75), 

Taco("Barbacoa", 2.50), 

Taco("Chicken", 2.00)) 

val cost= tacoOrder.foldleft(0.0)((sum, taco)=> sum + taco.price) 
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Parallel Reduction Operations 

Recall what we learned in the course Parallel Programming course 

about foldleft vs fold. 

Which of these two were parallelizable? 

f oldleft is not parallelizable. 

def foldleft[B](z: B)(f: (B, A)=> B): B 

Applies a binary operator to a start value and all elements of this 
collection or iterator, going left to right. 

A 

B 

- Scala API documentation 

B 



Para I lel Reduction Operations: Fold Left 

f oldleft is not parallelizable. 

def foldleft[B](z: B)(f: (B, A)=> B): B 

Being able to change the result type from A to B forces us to have to 
execute foldleft sequentially from left to right. 

Concretely, given: 

val xs = List(1, 2, 3, 4) 
val res = xs.foldleft("")((str: String, i: Int)=> str + i) 

What happens if we try to break this collection in two and parallelize? 



Para I lel Reduction Operations: Fold Left 

f oldleft is not parallelizable. 

def foldleft[B](z: B)(f: (B, A)=> B): B 

val xs = List(1, 2, 3, 4) 

val res = xs.foldleft('"')((str: String, i: Int) => str + i) Strir 

Lislll> 1.) 

\\ ,, -t 3 => � a 9 

''O'' + � · => \\�11 '' 



Parallel Reduction Operations: Fold 

fold enables us to parallelize things, but it restricts us to always returning 

the same type. 

def fold(z: A)(f: (A, A)=> A): A 

A 

It enables us to parallelize using a single function f by enabling us 

to build parallelizable reduce trees. 



Parallel Reduction Operations: Fold 

It enables us to parallelize using a single function f by enabling us 

to build parallelizable reduce trees. 

def fold(z: A)(f: (A, A)=> A): A 

I 

A 

A 
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Parallel Reduction Operations: Aggregate 

Does anyone remember what aggregate does? 

aggregate[BJ(z: => B)(seqop: (B, A)=> B, combop: (B, B) => B): B 

aggregate is said to be general because it gets you the best of both worlds. 

Properties of aggregate 

1. Parallelizable. 

2. Possible to change the return type. 



Parallel Reduction Operations: Aggregate 

aggregate[BJ(z: => B)(seqop: (B, A)=> B, combop: (B, B) => B): B 

I 
B 

A
� ,___

A 
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,.......A ......... ,_____, ) 
[]] B B 1 

Aggregate lets you still do sequential-style folds in chunks which change 
the result type. Additionally requiring the combop function enables building 
one of these nice reduce trees that we saw is possible with fold to 
combine these chunks in parallel. 
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Reduction Operations  on RDDs 

Scala collections: 
fold 
fold Left/fold Right 
reduce 
aggregate 

Spark: 
fold 
fold Left/fold RigRt 
reduce 
aggregate 

Spark doesn't even give you the option to use foldLeft/foldRight. Which 
means that if you have to change the return type of your reduction 
operation, your only choice is to use aggregate. 

Question: Why not still have a serial foldLeft/foldRight on Spark? 

Doing things serially across a cluster is actually difficult. Lots of 
synchronization. Doesn't make a lot of sense. 
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ROD Reduction Operations: Aggregate 

As you will realize after experimenting with Spark a bit, much of the time 

when working with large-scale data, your goal is to project down from 
larger/more complex data types. 

Example: 

case class WikipediaPage( 

title: String, 

redirectTitle: String, 

timestamp: String, 

lastContributorUsername: String, 

text: String) 

I might only care about title and timestamp, for example. In this case, it'd save a lot of 
time/memory to not have to carry around the full-text of each article {text) in our 
accumulator! 

Hence, why accumulate is often more desirable in Spark than in Scala collections! 


