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Why do you think Spark is good for data science?

Hint: Most data science problems involve iteration.
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lteration and Big Data Processing

Iteration in Hadoop:

WAE I —>
MapReduce program
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MapReduce program

iteration 1
MapReduce program

In put Read/write Read/write Read/write
(e.g., from HDFS) intermediate data intermediate data intermediate data

Iteration in Spark:
temb
f\\es

ItEration 3 Besr diLL

Input l In-memory computations, no need to read/write to disk. l

(e.g., from HDFS)
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lteration, Example: Logistic Regression

Logistic regression is an iterative algorithm typically used for classification. Like other
classification algorithms, the classifier's weights are iteratively updated based on a
training dataset.

e w—a-3 gwixy)
=1

Logistic regression can be implemented in Spark in a straightforward way:

val points = sc.textFile(...).map(parsePoint) Cale C[MS ’\DD;“'L (X;D’"Lk/ YDD%LK)
var w = Vector.zeros(d)
for (1 <- 1 to numlterations) {
val gradient = points.map { p =>
(1 /7 (0 + exp(-p.y * w.dot(p.x)))- 1) *x p.y * p.y
}.reduce(_ + _)
w -= alpha * gradient

}

What'’s going on in this code snippet?



lteration, Example: Logistic Regression

Logistic regression is an iterative algorithm typically used for classification. Like other
classification algorithms, the classifier's weights are iteratively updated based on a
training dataset.

val points = sc.textFile(...).map(parsePoint)
var w = Vector.zeros(d) T
for (1 <= 1 to numlterations) {
val gradient = points.@ig { p =>
(1 /7 (1 + exp(-p.y * w.dot(p.x)))- 1) * p.y * p.y
y.reduce(_ + _)
w -= alpha * gradient

}

points is being re-evaluated upon every iteration!
That’s unnecessary! What can we do about this?
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Caching and Persistence

By default, RDDs are recomputed each time you run an action on them.
This can be expensive (in time) if you need to use a dataset more than
once.

Spark allows you to control what is cached in memory.

val lastYearsLogs: RDD[String]l = ...

val logsWithErrors = lastYearslLogs.filter(_.contains(”ERROR”)).persist()
val firstLogsWithErrors = logsWithErrors.take(10)

val numErrors = 1ogsWithErrors.gpunt() // faster

Now, computing the count on logsWithErrors is much faster.



Back to Our Logistic Regression Example

Logistic regression is an iterative algorithm typically used for classification.
Like other classification algorithms, the classifier's weights are iteratively

updated based on a training dataset.

val points = sc.textFile(...).map(parsePointﬂfpersist(z)
var w = Vector.zeros(d)
for (1 <- 1 to numlterations) {
val gradient = points.mgp { p =>
(1 /7 (1 + exp(-p.y * w.dot(p.x)))- 1) * p.y * p.y
t.reduce(_ + _)
w —-= alpha * gradient

¥

Now, points is evaluated once and and is cached in memory. It is
then re-used on each iteration.



Caching and Persistence

There are many ways to configure how your data is persisted.

Possible to persist data set:

in memory as regular Java objects

on disk as regular Java objects

in memory as serialized Java objects (more compact)
on disk as serialized Java objects (more compact)

vvyyvyyvyy

both in memory and on disk (spill over to disk to avoid re-computation)

cache()
Shorthand for using the default storage level, which is in memory only as
regular Java objects.

persist
Persistence can be customized with this method. Pass the storage level
you d like as a parameter to persist.



Caching and Persistence

Storage levels. Other ways to control how Spark stores objects.

Space used CPU time In memory On disk

MEMORY_ONLY High Low Y N
MEMORY_ONLY_SER Low High Y A\
MEMORY_AND_DISK* High Medium Some Some
MEMORY_AND_DISK_SERT  Low High Some Some
DISK_ONLY Low High N Y

* Spills to disk if there is too much data to fit in memory
" Spills to disk if there is too much data to fit in memory. Stores serialized
representation in memory.
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Storage levels. Other ways to control how Spark stores objects.

Space used CPU time In memory On disk

MEMORY_ONLY High Low Y N

MEMORY_ONLY_SER Low High Y A\

MEMORY_AND_DISK* High Medium Some Some

MEMORY_AND_DISK_SERT  Low High Some Some

DISK_ONLY Low High N Y
Default

* Spills to disk if there is too much data to fit in memory
" Spills to disk if there is too much data to fit in memory. Stores serialized
representation in memory.
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RDDs Look Like Collections, But Behave Totally Differently

Key takeaway:

Despite similar-looking APl to Scala Collections,

the deferred semantics of Spark's RDDs are very unlike Scala Collections.

Due to:

> the lazy semantics of RDD transformation operations (map, flatMap,
filter),

» and users’ implicit reflex to assume collections are eagerly evaluated..

...0One of the most common performance bottlenecks of newcomers
to Spark arises from unknowingly re-evaluating several
transformations when caching could be used.

Don’t make this mistake in your programming assignments.
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While many users struggle with the lazy semantics of RDDs at first, it's
helpful to remember the ways in which these semantics are helpful in the
face of large-scale distributed computing.
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The execution of filter is deferred until the take action is applied.

Spark leverages this by analyzing and optimizing the chain of operations before
executing It.

Spark will not compute intermediate RDDs. Instead, as soon as 10 elements of the
filtered RDD have been computed, firstLogsWithErrors is done. At this point Spark
stops working, saving time and space computing elements of the unused result of filter.
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Restating the Benefits of Laziness for Large-Scale Data

While many users struggle with the lazy semantics of RDDs at first, it's
helpful to remember the ways in which these semantics are helpful in the

face of large-scale distributed computing.

Example #2:

val lastYearsLogs: RDD[String] = ...
val numErrors = lastYearsLogs.map(_.lowercase)
.filter(_.contains(”error”))

.count ()

Lazy evaluation of these transformations allows Spark to stage computations. That is,
Spark can make important optimizations to the the chain of operations before

execution.
For example, after calling map and filter, Spark knows that it can avoid doing multiple

passes through the data. That is, Spark can traverse through the RDD once, computing
the result of map and filter in this single pass, before returning the resulting count.



