
Big Data Analysis with Scala and Spark

Heather Miller

Transformations and Actions

Recall transformers and accessors from Scala sequential and parallel
collections.

Transformations and Actions

Recall transformers and accessors from Scala sequential and parallel
collections.

Transformers. Return new collections as results. (Not single values.)
Examples: map, filter, flatMap, groupBy

map(f: A=> B): Traversable[BJ

Transformations and Actions

Recall transformers and accessors from Scala sequential and parallel
collections.

Transformers. Return new collections as results. (Not single values.)
Examples: map, filter, flatMap, groupBy

map(f: A=> B): Traversable[BJ

Accessors: Return single values as results. (Not collections.)
Examples: reduce, fold, aggregate.

reduce(op: (A, A)=> A): A
,- A

Transformations and Actions

Similarly, Spark defines transformations and actions on RDDs.

They seem similar to transformers and accessors, but there are some
im portant differences.

Transformations. Return new caW@ctio1,s RDDs as results.

Actions. Com pute a result based on an RDD, and either returned or
saved to an external storage system (e.g. , HDFS).

\\I
• • •

Transformations and Actions

Similarly, Spark defines transformations and actions on RDDs.

They seem similar to transformers and accessors, but there are some
im portant differences.

�
Transformations. Return new collections RDDs as results.
They are laz , their result RDD is not immediately computed.

Actions. Com pute a result based on an RDD, and either returned or
saved to an external storage system (e.g. , HDFS).
They are eager, their result is immediately computed.

•

Transformations and Actions

Similarly, Spark defines transformations and actions on RDDs.

They seem similar to transformers and accessors, but there are some
im portant differences.

Transformations. Return new collections RDDs as results.
They are lazy, their result RDD is not immediately computed.

Actions. Com pute a result based on an RDD, and either returned or
saved to an external storage system (e.g. , HDFS).
They are eager, their result is immediately computed.

Laziness/eagerness is how we can limit network
communication using the programming model.

•

Example

Consider the following sim ple exam ple:

val largelist: List[String] = ...

val wordsRdd = sc.Rarallelize(largelist)

val lengthsRdd = wordsRdd.map(_.length)

RDD [S--lrit'\j1
R.t)t> (lVl4:1

What has happened on the cluster at this point?

Example

Consider the following sim ple exam ple:

val largelist: List[String] = ...
val wordsRdd = sc.parallelize(largelist)
val lengthsRdd = wordsRdd.map(_.length)

What has happened on the cluster at this point?

Nothing. Execution of map (a transform at ion) is deferred.

To kick off the com putation and wait for its resu It ...

Example

Consider the following sim ple exam ple:

val largelist: List[String] = ...

val wordsRdd = sc.parallelize(largelist)

val lengthsRdd = wordsRdd.map(_.length)

val totalChars = lengthsRdd.reduce(_ + _)

... we can add an action

Common Transformations in the Wild
lPri:='11 l .. .

map

flatMap

filter

distinct

map[BJ(f: A=> B): RDD[BJ L C

Apply function to each element in the ROD and
retrun an ROD of the result.

flatMap[BJ(f: A=> TraversableOnce[BJ): RDD[BJ �
Apply a function to each element in the ROD and return
an ROD of the contents of the iterators returned.

filter(pred: A=> Boolean): RDD[AJ� -

Apply predicate function to each element in the ROD and

return an ROD of elements that have passed the predicate
condition, pred.

distinct(): RDD[BJ<
Return ROD with duplicates removed.

Common Actions in the Wild
tA&�Gt- 1

.., ii.?=-

collect

count

take

reduce

foreach

collect(): Array[T] t.

Return all elements from RDD.

count(): Long t
Return the number of elements in the RDD.

take(num: Int): Array[T] E: -
Return the first num elements of the RDD.

reduce(op: (A, A) => A): A""
Combine the elements in the RDD together using op
function and return result.

foreach(f: T => Unit): Unit<
Apply function to each element in the RDD.

Another Exam pie

Let's assume that we have an RDD[String] which contains gigabytes of
logs collected over the previous year. Each element of this ROD represents
one line of logging.

Assuming that dates come in the form, YYYY-MM-DD:HH:MM:SS, and errors
are logged with a prefix that includes the word 11error" ...

How would you determine the number of errors that were logged in

December 2016?

val lastYearslogs: RDD[String] = ...

Another Exam pie

Let's assume that we have an RDD[String] which contains gigabytes of
logs collected over the previous year. Each element of this ROD represents
one line of logging.

Assuming that dates come in the form, YYYY-MM-DD:HH:MM:SS, and errors
are logged with a prefix that includes the word 11error" ...

How would you determine the number of errors that were logged in

December 2016?

val lastYearslogs: RDD[String] = ...
val numDecErrorlogs

= lastYearslogs.filter(lg => lg.contains("2016-12") && lg.contains("error"))
.count()

Benefits of Laziness for Large-Scale Data

Spark com putes RDDs the first time they are used in an action.

This helps when processing large amounts of data.

Example:

val lastYearslogs: RDD[String] = ...

val firstlogsWithErrors = lastYearslogs.filter(_.contains("ERROR")) .take(10)

The execution of filter is deferred until the take action is applied.

Spark leverages this by analyzing and optimizing the chain of operations before

executing it.

Spark will not compute intermediate RDDs. Instead, as soon as 10 elements of the

filtered RDD have been computed, firstLogsWi thErrors is done. At this point Spark

stops working, saving time and space computing elements of the unused result of filter.

Transformations on Two RDDs
LA�i __

rtAdJ r tld. 1..

\{ ,A_ y d J. 3 ::_ rJ.JJ . \A.t'\ i Oil (l-fAJ_ 2.)

RDDs also support set-like operations, like union and intersection.

Two-RDD transformations com bine two RDDs are com bined into one.

union

intersection

subtract

cartesian

union(other: RDD[T]): RDD[T] '=--

Return an RDD containing elements from both RDDs.

intersection(other: RDD[T]): RDD[T]'=

Return an RDD containing elements only found in
both RDDs.

subtract(other: RDD[T]): RDD[T]< -

Return an RDD with the contents of the other RDD
removed.

cartesian[U](other: RDD[U]): RDD[(T, U)] < -

Cartesian product with the other RDD.

Other Useful ROD Actions
����I V

RDDs also contain other im portant actions unrelated to regular Scala
collections, but which are useful when dealing with distributed data.

takeSample

takeOrdered

saveAsTextFile

takeSample(withRepl: Boolean, num: Int): Array[T] (::r---­

Return an array with a random sample of num elements of

the dataset, with or without replacement.

takeOrdered(num: Int)(implicit

ord: Ordering[T]): Array[T] ��-

Return the first n elements of the ROD using either

their natural order or a custom comparator.

saveAsTextFile(path: String): Unit:4:

Write the elements of the dataset as a text file in

the local filesystem or HDFS.

saveAsSequenceFile saveAsSequenceFile(path: String): Unit� -
Write the elements of the dataset as a Hadoop Se­

quenceFile in the local filesystem or HDFS.

