Resilient Distributed Datasets(RDDs),
Spark’s Distributed Collections

Big Data Analysis with Scala and Spark
Heather Miller



Resilient Distributed Datasets (RDDs)

RDDs seem a lot like immutable sequential or parallel Scala collections.



Resilient Distributed Datasets (RDDs)

RDDs seem a lot like immutable sequential or parallel Scala collections.

abstract class RDD[LT] {
def map[U]J(f: T => U): RDD[U] = ...
def flatMap[U](f: T => TraversableOncel[U]): RDD[U] = ...
def filter(f: T => Boolean): RDD[T] = ...
def reduce(f: (T, T) =>T): T = ...
J



Resilient Distributed Datasets (RDDs)

RDDs seem a lot like immutable sequential or parallel Scala collections.

abstract class RDDLT] {
def map[UJ(f: T => U): RDD[U] = ...
def flatMap[U]J(f: T => TraversableOnce[U]): RDD[U] = ...
def filter(f: T => Boolean): RDD[T] = ...
def reduce(f: (T, T) =>T): T = ...
J

Most operations on RDDs, like Scala’s immutable List, and Scala’s
parallel collections, are higher-order functions.

That is, methods that work on RDDs, taking a function as an argument,
and which typically return RDD:s.



Resilient Distributed Datasets (RDDs)

RDDs seem a lot like immutable sequential or parallel Scala collections.



Resilient Distributed Datasets (RDDs)

RDDs seem a lot like immutable sequential or parallel Scala collections.

Combinators on Scala Combinators on RDDs:
parallel /sequential collections:

map map

flatMap flatMap

filter filter

reduce reduce

fold fold

aggregate aggregate



Resilient Distributed Datasets (RDDs)

While their signatures differ a bit, their semantics (macroscopically) are
the same:

Bl1(f: A => B): List[B] // Scala List
B1(f: A => B): RDD[B] // Spark RDD

map

map

flatMap
flatMap

(f: A => TraversableOnce
(f: A => TraversableOnce

): List[B] // Scala List
): RDD[B] // Spark RDD

filter(pred: A => Boolean): List[A] // Scala List
filter(pred: A => Boolean): RDD[A] // Spark RDD




Resilient Distributed Datasets (RDDs)

While their signatures differ a bit, their semantics (macroscopically) are

the same:

reduce(op: (A, A) => A): A // Scala List
reduce(op: (A, A) => A): A // Spark RDD

fold(z: A)(o
fold(z: A)(o

aggregate
aggregate

0: (A, A) => A): A // Scala List

o: (A, A) => A): A // Spark RDD

Bl1(z: => B)(seqop: (B, A) => B, combop: (B, B) => B): B // Scala
Bl1(z: B)(seqop: (B, A) => B, combop: (B, B) => B): B // Spark RDD



Resilient Distributed Datasets (RDDs)

Using RDDs in Spark feels a lot like normal Scala sequential/parallel
collections, with the added knowledge that your data is distributed across

several machines.

Example:

Given, val encyclopedia: RDD[String], say we want to search all of
encyclopedia for mentions of EPFL, and count the number of pages that

mention EPFL.



Resilient Distributed Datasets (RDDs)

Using RDDs in Spark feels a lot like normal Scala sequential /parallel
collections, with the added knowledge that your data is distributed across

several machines.

Example:

Given, val encyclopedia: RDD[String], say we want to search all of
encyclopedia for mentions of EPFL, and count the number of pages that

mention EPFL.

val result = encyclopedia.filter(page => page.contains(”EPFL”))
.count ()



Example: Word Count

The “Hello, World!" of programming with large-scale data.

// c:reaW RDD (String]

val rdd = spark.textFile(”hdfs://...”)

val count = 77?7



Example: Word Count

The “Hello, World!" of programming with large-scale data.

// Create an RDD
val rdd = spark.textFile(”hdfs://...”) RDDCS'hN‘d] e/words

val count = rdd.flatMap(line => line.split(” ”)) // separate lines into words



Example: Word Count

The “Hello, World!" of programming with large-scale data.

// Create an RDD
val rdd = spark.textFile(”hdfs://...”)

val count = rdd.flatMap(line => line.split(” ”)) // separate lines into words
.map(word => (word, 1)) // 1include something to count

Gap ===



Example: Word Count

The “Hello, World!" of programming with large-scale data.

// Create an RDD
val rdd = spark.textFile(”hdfs://...”)

val count = rdd.flatMap(line => line.split(” ”)) // separate lines into words
.map(word => (word, 1)) // include something to count
.reduceByKey(_ + _) // sum up the 1s in the pairs

That's it.



How to Create an RDD?

RDDs can be created in two ways:



How to Create an RDD?

RDDs can be created in two ways:

» Transforming an existing RDD.
> From a SparkContext (or SparkSession) object.

o —




How to Create an RDD?

RDDs can be created in two ways:

» Transforming an existing RDD.
» From a SparkContext (or SparkSession) object.

Transforming an existing RDD.
Just like a call to map on a List returns a new List, many higher-order
functions defined on RDD return a new RDD.



How to Create an RDD?

RDDs can be created in two ways:

» Transforming an existing RDD.
» From a SparkContext (or SparkSession) object.

\\/ ///

a
o
s ! ¢

' From a SparkContext (or SparkSession) object.
The SparkContext object (renamed SparkSession) can be thought of as
your handle to the Spark cluster. It represents the connection between the
Spark cluster and your running application. It defines a handful of
methods which can be used to create and populate a new RDD:

> parallelize: convert a local Scala collection to an RDD.

> textFile: read a text file from HDFS or a local file system and return
an RDD of String




