


Resi I ient Distributed Datasets ( RD Ds) 

RDDs seem a lot like immutable sequential or parallel Scala collections. 



Resi I ient Distributed Datasets ( RD Ds) 

RDDs seem a lot like immutable sequential or parallel Scala collections. 

abstract class RDD[TJ { 

} 

def map[U](f: T => U): RDD[UJ = ... 
def flatMap[UJ(f: T => TraversableOnce[UJ): RDD[UJ = ... 
def filter(f: T => Boolean): RDD[TJ = ... 
def reduce(f: (T, T) => T): T = ... 



Resi I ient Distributed Datasets ( RD Ds) 

RDDs seem a lot like immutable sequential or parallel Scala collections. 

abstract class RDD[TJ { 

} 

def map[U](f: T => U): RDD[UJ = ... 
def flatMap[UJ(f: T => TraversableOnce[UJ): RDD[UJ = ... 
def filter(f: T => Boolean): RDD[TJ = ... 
def reduce(f: (T, T) => T): T = ... 

Most operations on RDDs, like Scala's immutable List, and Scala's 
parallel collections, are higher-order functions. 

That is, methods that work on RDDs, taking a function as an argument, 
and which typically return RDDs. 



Resi I ient Distributed Datasets ( RD Ds) 

RDDs seem a lot like immutable sequential or parallel Scala collections. 



Resi I ient Distributed Datasets ( RD Ds) 

RDDs seem a lot like immutable sequential or parallel Scala collections. 

Combinators on Scala 
parallel/ sequential collections: 
map 

flatMap 

filter 

reduce 

fold 

aggregate 

Combinators on RDDs: 

map 

flatMap 

filter 

reduce 

fold 

aggregate 



Resi I ient Distributed Datasets ( RD Ds) 

While their signatures differ a bit, their semantics (macroscopically) are 
the same: 

map[BJ(f: A=> B): List[BJ // Scala List 

map[B](f: A=> B): RDD[BJ // Spark ROD 

flatMap[BJ(f: A=> TraversableOnce[B]): List[BJ // Scala List 

flatMap[BJ(f: A=> TraversableOnce[B]): RDD[BJ // Spark ROD 

filter(pred: A=> Boolean): List[AJ // Scala List 

filter(pred: A=> Boolean): RDD[AJ // Spark ROD 



Resi I ient Distributed Datasets ( RD Ds) 

While their signatures differ a bit, their semantics (macroscopically) are 
the same: 

reduce(op: (A, A)=> A): A// Scala List 

reduce(op: (A, A)=> A): A// Spark RDD 

fold(z: A)(op: (A, A)=> A): A// Scala List 

fold(z: A)(op: (A, A)=> A): A// Spark RDD 

aggregate[BJ(z: => B)(seqop: (B, A)=> B, combop: (B, B) => B): B // Scala 

aggregate[BJ(z: B)(seqop: (B, A)=> B, combop: (B, B) => B): B // Spark RDD 



Resi I ient Distributed Datasets ( RD Ds) 

Using RDDs in Spark feels a lot like normal Scala sequential/parallel 
collections, with the added knowledge that your data is distributed across 
several machines. 

Example: 

Given, val encyclopedia: RDD[String], say we want to search all of 
encyclopedia for mentions of EPFL, and count the number of pages that 
mention EPFL. 



Resi I ient Distributed Datasets ( RD Ds) 

Using RDDs in Spark feels a lot like normal Scala sequential/parallel 
collections, with the added knowledge that your data is distributed across 
several machines. 

Example: 

Given, val encyclopedia: RDD[String], say we want to search all of 
encyclopedia for mentions of EPFL, and count the number of pages that 
mention EPFL. 

val result= encyclopedia.filter(page => page.contains("EPFL")) 
.count() 



Example: Word Count 

The 11 Hello, World!" of programming with large-scale data. 

II Creat 

val rdd = spark.textFile("hdfs:// ... ") 

val count=??? 



Example: Word Count 

The 11 Hello, World!" of programming with large-scale data. 

II Create an RDD 

val rdd = spark.textFile("hdfs:// ... ") 

val count = rdd.flatMap(line => line.split(" "))// separate lines into words 



Example: Word Count 

The 11 Hello, World!" of programming with large-scale data. 

II Create an RDD 

val rdd = spark.textFile("hdfs:// ... ") 

val count = rdd.flatMap(line => line.split(" "))// separate lines into words 

.map(word => (word, 1)) // include something to count 
a. I --



Example: Word Count 

The 11 Hello, World!" of programming with large-scale data. 

II Create an RDD 

val rdd = spark.textFile("hdfs:// ... ") 

val count = rdd.flatMap(line => line.split(" "))// separate lines into words 

That's it. 

.map(word => (word, 1)) // include something to count 

.reduceByKey(_ + _) // sum up the 1s in the pairs 



How to Create an ROD? 

RDDs can be created in two ways: 



How to Create an ROD? 

RDDs can be created in two ways: 

...,. Transforming an ex ist ing RDD . 

...,. From a SparkContext ( or SparkSession) object. 



How to Create an ROD? 

RDDs can be created in two ways: 

..,. Transforming an existing RDD . 

..,. From a SparkContext ( or SparkSession) object. 

Transforming an existing RDD. 

Just like a call to map on a List returns a new List, many higher-order 
functions defined on RDD return a new RDD. 



• 

How to Create an ROD? 

RDDs can be created in two ways: 

...,. Transforming an existing RDD . 

...,. From a SparkContext (or SparkSession) object. 

/I/ 
• • • 

From a SparkContext (or SparkSession) object . 
The SparkContext object (renamed SparkSession) can be thought of as 
your handle to the Spark cluster. It represents the connection between the 
Spark cluster and your running application. It defines a handful of 
methods which can be used to create and populate a new RDD: 

...,. �parallelize: convert a local Scala collection to an RDD . 

...,. textFile: read a text file from HDFS or a local file system and return 
an RDD of String 

• 


