

Distribution

Distribution introduces important concerns beyond what we had to worry
about when dealing with parallelism in the shared memory case:

111-- Partial failure: crash failures of a subset of the machines involved in a
distributed computation .

...,. Latency: certain operations have a much higher latency than other
operations due to network communication.

Distribution

Distribution introduces important concerns beyond what we had to worry
about when dealing with parallelism in the shared memory case:

111-- Partial failure: crash failures of a subset of the machines involved in a
distributed computation .

...,. Latency: certain operations have a much higher latency than other
operations due to network communication.

Latency cannot be masked completely; it will be an important
aspect that also impacts the programming model.

Important Latency Numbers

L 1 cache reference 0.5ns

Branch mispredict 5ns

L2 cache reference 7ns

Mutex lock/unlock 25ns

Main memory reference l00ns

Compress lK bytes with Zippy 3,000ns == 3µs

Send 2K bytes over lGbps network 20,000ns == 20µs

SSD random read 150,000ns == 150µs

Read 1 MB sequentially from 250,000ns == 250µs

Roundtrip within same datacenter 500,000ns == 0.5ms

Read 1MB sequentially from SSD 1,000,000ns == lms

Disk seek 10,000,000ns == l0ms

Read 1MB sequentially from disk 20,000,000ns == 20ms

Send packet US ---+ Europe ---+ US 150,000,000ns == 150ms

Original compilation by Jeff Dean & Peter Norvig, w/ contributions by Joe Hellerstein & Erik Meijer

Important Latency Numbers

L 1 cache reference

Branch mispredict

L2 cache reference

Mutex lock/unlock

Main memory reference

Compress lK bytes with Zippy

Send 2K bytes over lGbps network

SSD random read

0.5ns

5ns

7ns

25ns

l00ns

3,000ns == 3µs

20,000ns == 20µs

150,000ns == 150µs
Read 1 MB sequ�tially from yY\f,tflort _f50,000ns = 250µs

Roundtrip within same datacenter 500,000ns == 0.5ms

Read 1MB sequentially from SSD 1,000,000ns == lms

Disk seek 10,000,000ns == l0ms

Read 1MB sequentially from disk 20,000,000ns == 20ms -
Send packet US ---+ Europe ---+ US 150,000,000ns == 150ms

Original compilation by Jeff Dean & Peter Norvig, w/ contributions by Joe Hellerstein & Erik Meijer

Important Latency Numbers

L 1 cache reference

Branch mispredict

L2 cache reference

Mutex lock/unlock

Main memory reference

Compress lK bytes with Zippy

Send 2K bytes over lGbps network

SSD random read
Read 1 MB sequentially from

Roundtrip within same datacenter

Read 1MB sequentially from SSD

Disk seek

Read 1MB sequentially from disk

Send packet US ---+ Europe ---+ US

0.5ns

5ns

7ns

25ns

l00ns

3,000ns == 3µs

20,000ns == 20µs

150,000ns == 150µs

250,000ns == 250µs

500,000ns == 0.5ms

1,000,000ns == lms

10,000,000ns == l0ms

20 000 000ns == 20ms , ,

150,000,000ns == 150ms

Original compilation by Jeff Dean & Peter Norvig, w/ contributions by Joe Hellerstein & Erik Meijer

Important Latency Numbers

L 1 cache reference

Branch mispredict

L2 cache reference

Mutex lock/unlock

Main memory reference

0.5ns

5ns

7ns

25ns

l00ns

Compress lK bytes with Zippy 3,000ns == 3µs
Send 2K bytes over lGbps network 20,000ns == 20µs

SSD random read 150,000ns == 150µs
Read 1 MB sequentially from M�o"1 250,000ns = 250µs

Roundtrip within same datacenter

Read 1MB sequentially from SSD

Disk seek

Read 1MB sequentially from disk

')>, Send packet US � Europe � US

500,000ns

1,000,000ns

10,000,000ns

20,000,000ns

150,000,000ns

== 0.5ms

== lms

== l0ms

== 20ms

== 150ms

YY\t,wto�i: fostat­
cJisK: slo�
ne:hJtY1C 1

• slovi tSi

Original compilation by Jeff Dean & Peter Norvig, w/ contributions by Joe Hellerstein & Erik Meijer

Latency Numbers Intuitively

To get a better intuition about the orders-of-magnitude differences of
these numbers, let's humanize these durations.

Method: multiply all these durations by a billion.

Then, we can map each latency number to a human activity.

Humanized Latency Numbers

Humanized durations grouped by magnitude:

Minute:

Ll cache reference
Branch mispredict
L2 cache reference
Mutex lock/unlock

Hour:

0.5 s
5 s
7 s
25 s

Main memory reference 100 s
Compress 1K bytes with Zippy 50 min

One heart beat (0.5 s)
Yawn
Long yawn
Making a coffee

Brushing your teeth
One episode of a TV show

Humanized Latency Numbers

Day:

Send 2K bytes over 1 Gbps network 5.5 hr

Week:

SSD random read 1 . 7 days
Read 1 MB sequentially from memory 2.9 days
Round trip within same datacenter 5.8 days
Read 1 MB sequentially from SSD 11 . 6 days

From lunch to end of work day

A normal weekend
A long weekend
A medium vacation
Waiting for almost 2
weeks for a delivery

More Humanized Latency Numbers

Year:

Disk seek 16 .5 weeks
Read 1 MB sequentially from disk 7 .8 months

The above 2 together 1 year

Decade:

Send packet CA->Netherlands->CA 4.8 years

A semester in university
Almost producing a new
human being

Average time it takes to
complete a bachelor's degree

Latency and System Design

Big Data Processing and Latency?

With some intuit ion now a bout how expensive network communication
and disk operations can be, one may ask:

How do these latency numbers relate to big data processing?

To answer this question, let's first start with Spark's predecessor, Hadoop.

Hadoop/MapReduce

Hadoop is a widely-used large-scale batch data processing framework. It's
an open source implementation of Google's MapReduce.

Hadoop/MapReduce

Hadoop is a widely-used large-scale batch data processing framework. It's
an open source implementation of Google's MapReduce.

MapReduce was ground-breaking because it provided:

...,. a simple AP I (simple map and reduce steps)
-.. ** fault tolerance **

Hadoop/MapReduce

Hadoop is a widely-used large-scale batch data processing framework. It's
an open source implementation of Google's MapReduce.

MapReduce was ground-breaking because it provided:

...,. a simple AP I (simple map and reduce steps)
-.. ** fault tolerance **

Fault tolerance is what made it possible for Hadoop/MapReduce to scale
to 100s or 1000s of nodes at all.

Hadoop/MapReduce + Fault Tolerance

Why is this important?

For 100s or 1000s of old commodity machines, likelihood of at least one
node failing is very high midway th rough a job.

Hadoop/MapReduce + Fault Tolerance

Why is this important?

For 100s or 1000s of old commodity machines, likelihood of at least one
node failing is very high midway th rough a job.

Thus, Hadoop/MapReduce's ability to recover from node failure enabled:

...,. computations on unthinkably large data sets to succeed to
completion.

Hadoop/MapReduce + Fault Tolerance

Why is this important?

For 100s or 1000s of old commodity machines, likelihood of at least one
node failing is very high midway th rough a job.

Thus, Hadoop/MapReduce's ability to recover from node failure enabled:

...,. computations on unthinkably large data sets to succeed to
completion.

Fault tolerance + simple API =
At Google, MapReduce made it possible for an average Google software
engineer to craft a complex pipeline of map/reduce stages on extremely
large data sets.

Why Spark?

•

Why Spark?

Fault-tolerance in Hadoop/MapReduce comes at a cost.

Between each map and reduce step, in order to recover from potential
failures, Hadoop/MapReduce shuffles its data and write intermediate data
to disk.

Why Spark?

Fault-tolerance in Hadoop/MapReduce comes at a cost.

Between each map and reduce step, in order to recover from potential
failures, Hadoop/MapReduce shuffles its data and write intermediate data
to disk.

Remember:
Reading/writing to disk: lOOlx slower than in-memory

Network communication: 1,000,000x slower than in-memory

Why Spark?

Spark ...

1111-- Retains fault-tolerance
..,. Different strategy for handling latency (latency significantly reduced!)

Why Spark?

Spark ...

1111-- Retains fault-tolerance
..,. Different strategy for handling latency (latency significantly reduced!)

Achieves this using ideas from functional programming!

Why Spark?

Spark ...

1111-- Retains fault-tolerance
..,. Different strategy for handling latency (latency significantly reduced!)

Achieves this using ideas from functional programming!

Idea: Keep all data immutable and in-memory. All operations on data
are just functional transformations, like regular Scala collections . Fault
tolerance is achieved by replaying functional transformations over original
dataset .

Why Spark?

Spark ...

_... Retains fault-tolerance
...,. Different strategy for handling latency (latency significantly reduced!)

Achieves this using ideas from functional programming!

Idea: Keep all data immutable and in-memory. All operations on data
are just functional transformations, like regular Scala collections. Fault
tolerance is achieved by replaying functional transformations over original
dataset.

Result: Spark has been shown to be l00x more performant than Hadoop,
while adding even more expressive APls.

Latency and System Design (t"tUJN\o,l\lZ:eJ. J

Spark versus Hadoop Performance?

C
0

�

120 .. .
r I Os

90

2 60
�
Q)

Q)
E
I-

30

0
Logistic Regression

Hadoop
Spark

Logistic Regression in
Hadoop and Spark
Source: spark.apache.org

Spark versus Hadoop Performance?

Logistic Regression in
Hadoop and Spark,
more iterations!
Source: https: //databricks.com/
blog /2014 /03 /20 /apache-spark-a­
del ig ht-for-developers. htm I

·-

Hadoop vs Spark Performance, More Intuitively

Day-to-day, these perforamnce improvements can mean the difference
between:

Hadoop/MapReduce
1. s-t o.rl- j O .b
2. u;t l�ncJ,, ll(
j. � �ft-ee
�- pi� vr l(io\J
5. job tArry(-t.k.s

Spark versus Hadoop Popularity?

According to Google Trends, Spark has surpassed Hadoop in popularity.

100

75

50

25

Feb 1, 2007 Jul 1,2010

Google Trends:
Apache Hadoop vs Apache Spark
February 2007 - February 2017

Dec 1, 2013

Apache Spark

Apache Hadoop

