






Distribution 

Distribution introduces important concerns beyond what we had to worry 
about when dealing with parallelism in the shared memory case: 

111-- Partial failure: crash failures of a subset of the machines involved in a 
distributed computation . 

...,. Latency: certain operations have a much higher latency than other 
operations due to network communication. 
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Distribution introduces important concerns beyond what we had to worry 
about when dealing with parallelism in the shared memory case: 

111-- Partial failure: crash failures of a subset of the machines involved in a 
distributed computation . 

...,. Latency: certain operations have a much higher latency than other 
operations due to network communication. 

Latency cannot be masked completely; it will be an important 
aspect that also impacts the programming model. 



Important Latency Numbers 

L 1 cache reference 0.5ns 

Branch mispredict 5ns 

L2 cache reference 7ns 

Mutex lock/unlock 25ns 

Main memory reference l00ns 

Compress lK bytes with Zippy 3,000ns == 3µs 

Send 2K bytes over lGbps network 20,000ns == 20µs 

SSD random read 150,000ns == 150µs 

Read 1 MB sequentially from 250,000ns == 250µs 

Roundtrip within same datacenter 500,000ns == 0.5ms 

Read 1MB sequentially from SSD 1,000,000ns == lms 

Disk seek 10,000,000ns == l0ms 

Read 1MB sequentially from disk 20,000,000ns == 20ms 

Send packet US ---+ Europe ---+ US 150,000,000ns == 150ms 

Original compilation by Jeff Dean & Peter Norvig, w/ contributions by Joe Hellerstein & Erik Meijer 
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Latency Numbers Intuitively 

To get a better intuition about the orders-of-magnitude differences of 
these numbers, let's humanize these durations. 

Method: multiply all these durations by a billion. 

Then, we can map each latency number to a human activity. 



Humanized Latency Numbers 

Humanized durations grouped by magnitude: 

Minute: 

Ll cache reference 
Branch mispredict 
L2 cache reference 
Mutex lock/unlock 

Hour: 

0.5 s 
5 s 
7 s 
25 s 

Main memory reference 100 s 
Compress 1K bytes with Zippy 50 min 

One heart beat (0.5 s) 
Yawn 
Long yawn 
Making a coffee 

Brushing your teeth 
One episode of a TV show 



Humanized Latency Numbers 

Day: 

Send 2K bytes over 1 Gbps network 5.5 hr 

Week: 

SSD random read 1 . 7 days 
Read 1 MB sequentially from memory 2.9 days 
Round trip within same datacenter 5.8 days 
Read 1 MB sequentially from SSD 11 . 6 days 

From lunch to end of work day 

A normal weekend 
A long weekend 
A medium vacation 
Waiting for almost 2 
weeks for a delivery 



More Humanized Latency Numbers 

Year: 

Disk seek 16 .5 weeks 
Read 1 MB sequentially from disk 7 .8 months 

The above 2 together 1 year 

Decade: 

Send packet CA->Netherlands->CA 4.8 years 

A semester in university 
Almost producing a new 
human being 

Average time it takes to 
complete a bachelor's degree 



Latency and System Design 



Big Data Processing and Latency? 

With some intuit ion now a bout how expensive network communication 
and disk operations can be, one may ask: 

How do these latency numbers relate to big data processing? 

To answer this question, let's first start with Spark's predecessor, Hadoop. 



Hadoop/MapReduce 

Hadoop is a widely-used large-scale batch data processing framework. It's 
an open source implementation of Google's MapReduce. 
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Hadoop/MapReduce 

Hadoop is a widely-used large-scale batch data processing framework. It's 
an open source implementation of Google's MapReduce. 

MapReduce was ground-breaking because it provided: 

...,. a simple AP I (simple map and reduce steps) 
-.. ** fault tolerance ** 

Fault tolerance is what made it possible for Hadoop/MapReduce to scale 
to 100s or 1000s of nodes at all. 



Hadoop/MapReduce + Fault Tolerance 
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For 100s or 1000s of old commodity machines, likelihood of at least one 
node failing is very high midway th rough a job. 
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Hadoop/MapReduce + Fault Tolerance 

Why is this important? 

For 100s or 1000s of old commodity machines, likelihood of at least one 
node failing is very high midway th rough a job. 

Thus, Hadoop/MapReduce's ability to recover from node failure enabled: 

...,. computations on unthinkably large data sets to succeed to 
completion. 

Fault tolerance + simple API = 
At Google, MapReduce made it possible for an average Google software 
engineer to craft a complex pipeline of map/reduce stages on extremely 
large data sets. 



Why Spark? 
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Why Spark? 

Fault-tolerance in Hadoop/MapReduce comes at a cost. 

Between each map and reduce step, in order to recover from potential 
failures, Hadoop/MapReduce shuffles its data and write intermediate data 
to disk. 



Why Spark? 

Fault-tolerance in Hadoop/MapReduce comes at a cost. 

Between each map and reduce step, in order to recover from potential 
failures, Hadoop/MapReduce shuffles its data and write intermediate data 
to disk. 

Remember: 
Reading/writing to disk: lOOlx slower than in-memory 

Network communication: 1,000,000x slower than in-memory 
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Why Spark? 

Spark ... 

_... Retains fault-tolerance 
...,. Different strategy for handling latency (latency significantly reduced!) 

Achieves this using ideas from functional programming! 

Idea: Keep all data immutable and in-memory. All operations on data 
are just functional transformations, like regular Scala collections. Fault 
tolerance is achieved by replaying functional transformations over original 
dataset. 

Result: Spark has been shown to be l00x more performant than Hadoop, 
while adding even more expressive APls. 
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Spark versus Hadoop Performance? 
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Logistic Regression in 
Hadoop and Spark 
Source: spark.apache.org 



Spark versus Hadoop Performance? 

Logistic Regression in 
Hadoop and Spark, 
more iterations! 
Source: https: //databricks.com/ 
blog /2014 /03 /20 /apache-spark-a­
del ig ht-for-developers. htm I 
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Hadoop vs Spark Performance, More Intuitively 

Day-to-day, these perforamnce improvements can mean the difference 
between: 

Hadoop/MapReduce 
1. s-t o.rl- j O .b 
2. u;t l�ncJ,, ll( 
j. � �ft-ee 
�- pi� vr l(io\J 
5. job tArry(-t.k.s 



Spark versus Hadoop Popularity? 

According to Google Trends, Spark has surpassed Hadoop in popularity. 
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