Normally:

Data science and analytics is done "in the small", in R/Python/MATLAB, etc

Normally:

Data science and analytics is done "in the small", in R/Python/MATLAB, etc

If your dataset ever gets too large to fit into memory, these languages/frameworks won't allow you to scale. You've to reimplement everything in some other language or system.

Normally:

Data science and analytics is done "in the small", in R/Python/MATLAB, etc

If your dataset ever gets too large to fit into memory, these languages/frameworks won't allow you to scale. You've to reimplement everything in some other language or system.

Oh yeah, there's also the massive shift in industry to data-oriented decision making too!

...and many applications are "data science in the large".

By using a language like Scala, it's easier to scale your small problem to the large with Spark, whose API is almost 1-to-1 with Scala's collections.

That is, by working in Scala, in a functional style, you can quickly scale your problem from one node to tens, hundreds, or even thousands by leveraging Spark, successful and performant large-scale data processing framework which looks a and feels a lot like Scala Collections!

Why Spark?

Spark is...

More expressive. APIs modeled after Scala collections. Look like functional lists! Richer, more composable operations possible than in MapReduce.

Why Spark?

Spark is...

- More expressive. APIs modeled after Scala collections. Look like functional lists! Richer, more composable operations possible than in MapReduce.
- Performant. Not only performant in terms of running time... But also in terms of developer productivity! Interactive!

Why Spark?

Spark is...

- More expressive. APIs modeled after Scala collections. Look like functional lists! Richer, more composable operations possible than in MapReduce.
- Performant. Not only performant in terms of running time... But also in terms of developer productivity! Interactive!
- Good for data science. Not just because of performance, but because it enables iteration, which is required by most algorithms in a data scientist's toolbox.

Also good to know...

Spark and Scala skills are in extremely high demand!

In this course you'll learn...

- Extending data parallel paradigm to the distributed case, using Spark.
- Spark's programming model
- Distributing computation, and cluster topology in Spark
- How to improve performance; data locality, how to avoid recomputation and shuffles in Spark.
- Relational operations with DataFrames and Datasets

Many excellent books released in the past year or two!

Andy Konwinski, Patrick Wendell, and Matei Zaharia

Many excellent books released in the past year or two!

and Marko Bonaci

Many excellent books released in the past year or two!

High Performance Spark (2017), written by Holden Karau and Rachel Warren

Many excellent books released in the past year or two!

WE ARE HIRING!

Pricing

Explore

About

Blog

Sign In

Sign Up

jaceklaskowski > Mastering Apache Spark 2

Updated an hour ago

Mastering Apache Spark 2, by Jacek Laskowski

ABOUT

138 DISCUSSIONS

O CHANGE REQUESTS

★ Star 682

Subscribe

308

Read

□ Download PDF

Mastering Apache Spark 2

Welcome to Mastering Apache Spark 2 (aka #SparkLikePro)!

I'm Jacek Laskowski, an **independent consultant** who is passionate about **Apache Spark**, Apache Kafka, Scala, sbt (with some flavour of Apache Mesos, Hadoop YARN, and DC/OS). I lead Warsaw Scala Enthusiasts and Warsaw Spark meetups in Warsaw, Poland.

Tools

- IDE of your choice
- sbt
- Databricks Community Edition (optional)

Free hosted in-browser Spark notebook. Spark "cluster" managed by Databricks so you don't have to worry about it. 6GB of memory for you to experiment with.