
Classes



Lesson Objectives
• After completing this lesson, you should be able to: 
– Create and instantiate classes in Scala 
– Describe how arguments are passed to Scala class 

instances 
– Outline the lifespan of class parameters in a Scala class 

instance



What is a Class?
• A class is a description of a Type 

– Embodies state in an instance of a class 
– Represents behavior for how that state can be transformed 
– Is not concrete until it has been “instantiated” via a call to 

its constructor via the “new” keyword 
– Multiple instances of a class can exist



A Simple Scala Class



The Primary Constructor
• Each class gets a primary constructor automatically 
– Defines the “signature” of how to create an instance 
– The body of the class is the implementation of the 

constructor



The Primary Constructor



Class Parameters
• You can pass values into an instance of a class using 

one or more parameters to the constructor 
– You must specify the type of the parameter 
– The values are internally visible for the life of the class 

instance 
– They cannot be accessed from outside of the class instance



Class Parameters



Class Parameters are not Accessible



• Having completing this lesson, you should be able to: 
– Create and instantiate classes in Scala 
– Describe how arguments are passed to Scala class 

instances 
– Outline the lifespan of class parameters in a Scala class 

instance

Lesson Summary



Immutable and Mutable Fields



Lesson Objectives
• After completing this lesson, you should be able to: 

– Describe the difference between mutable and immutable 
fields 

– Create fields in Scala classes 
– Describe the difference between class parameters and 

fields 
– Outline how to promote class parameters to fields



What is a Field?
• A value encapsulated within an instance of a class 
– Represents the state of an instance, and therefore of an 

application at a given time 
– Is accessible to the outside world, unless specified 

otherwise



Fields versus Parameters
• Parameters are passed to a class and are only visible 

within a class 
• Fields exist in the body of the class, and are 

accessible to outsiders



Immutable Fields



Mutable Fields



Immutable or Mutable?
• Immutable fields cannot be changed and are 

therefore “threadsafe” in a multithreaded 
environment, such as the JVM 

• Mutable fields can be useful, but require diligence to 
ensure that multiple threads cannot update the field 
at the same time



Use Immutable By Default
• It is easier to reason about immutable fields and 

classes that only contain immutable fields 
• Scala makes all class parameters immutable by 

default



Specify Types
• Scala has “type inference” 
• It is a good habit to be specific about types anyway



Promoting Class Parameters
• If you want to make a parameter passed to a class 

constructor into a publicly visible field, add the val 
keyword in front of it 

• The Scala compiler will generate an accessor 
method for you, and other class instances can now 
ask for the current state of the promoted field



Promoting Class Parameters



• Having completing this lesson, you should be able to: 
– Describe the difference between mutable and immutable 

fields 
– Create fields in Scala classes 
– Describe the difference between class parameters and 

fields 
– Outline how to promote class parameters to fields

Lesson Summary



Methods



Lesson Objectives
• After completing this lesson, you should be able to: 
– Implement methods in Scala 
– Describe evaluation order of methods versus fields in 

Scala 
– Outline how infix notation works in Scala



What is a Method?
• A method describes behavior within a class 

– Are something that can be called to do work 
– Where transformations to internal state can take place 
– May take parameters as inputs, and may return a single value 
– Should specify their return type 

– More correctness 
– Faster compilation



A Simple Scala Method



Why Methods Instead of Fields?
• Methods can look like fields 
• Methods are evaluated at the time they are called 
• Methods are re-evaluated every time they are called 
• Fields are only evaluated at the time the class is 

constructed, and if immutable, only one time



Infix Notation
• Methods are called on an instance of a class 
• Scala permits methods to be called with no “.” or 

parentheses, if the method takes only one argument 
• This is flexible syntax that supports powerful DSLs 
• For readability, you should not use this feature



Infix Method Calling



• Having completing this lesson, you should be able 
to: 
– Implement methods in Scala 
– Describe evaluation order of methods versus fields in 

Scala 
– Outline how infix notation works in Scala

Lesson Summary



Default and Named Arguments



Lesson Objectives
• After completing this lesson, you should be able to: 
– Utilize default argument values in Scala class constructors 

and methods 
– Leverage named arguments to only pass certain values 



Default Argumets
• Allows the developer to specify a value to use for a 

constructor or method when none is passed by the 
caller, and omit values that are frequently the same 

• Reduces boilerplate in application source code 
because you don’t have to “overload” methods with 
different signatures



Default Arguments



Best Practice
• If you have a mixture of default arguments and those 

that do not have a default value, put the arguments 
without defaults first



Named Argumets
• Leading arguments can be omitted if they have 

default values 
• You can specify only the values you want to pass



Named Arguments



• Having completing this lesson, you should be able 
to: 
– Utilize default argument values in Scala class constructors 

and methods 
– Leverage named arguments to only pass certain values 

Lesson Summary



Objects



Lesson Objectives
• After completing this lesson, you should be able to: 
– Create Singleton objects in Scala 
– Describe the difference between a class and an object in 

Scala 
– Outline usages for objects in Scala applications 
– Start a Scala application



What is an Object?
• The Singleton Pattern 
– Defines a single instance of a class that cannot be 

recreated within a single JVM instance 
– Can be directly accessed via its name



A Simple Scala Object



Why is this Useful?
• Many languages permit the definition of “static” 

fields and methods 
• These are globally available within the runtime, such 

as a JVM 
• They are not related to specific instances of a class



When are Objects Used?
• Class Factories 
• Utility methods 
• Constant definitions



A Simple Object



Starting a Scala Application



Starting a Scala Application



• Having completing this lesson, you should be able to: 
– Create Singleton objects in Scala 
– Describe the difference between a class and an object in 

Scala 
– Outline usages for objects in Scala applications 
– Start a Scala application

Lesson Summary



Accessibility and Companion Objects



Lesson Objectives
• After completing this lesson, you should be able to: 
– Leverage accessibility keywords to manage visibility of 

methods and fields 
– Describe the role companion objects play in Scala 
– Outline how to use companion objects



Accessibility
• We can use keywords to limit the visibility of 

methods and fields in class instances 
– public, the default 
– private, limiting visibility only to yourself 
– protected, unimportant for now



Accessibility



Companion Objects
• If a Singleton object and a class share the same 

name and are located in the same source file, they 
are called companions 

• A companion class can access private fields and 
methods inside of its companion object



Companion Objects
• This is a great way to separate static members 

(fields, constants and methods) that are unrelated to 
a specific instance from those members that are 
related to a specific instance of that class



Companion Objects



• Having completing this lesson, you should be able 
to: 
– Leverage accessibility keywords to manage visibility of 

methods and fields 
– Describe the role companion objects play in Scala 
– Outline how to use companion objects

Lesson Summary



Case Classes and Case Objects



Lesson Objectives
• After completing this lesson, you should be able to: 
– Describe when to use case classes and case objects 

instead of regular classes and objects 
– Outline the differences between case classes and objects 

compared to regular classes and objects



What is a Data Class?
• Some classes represent specific data types in a 

“domain” 
• Imagine an online store: 

– Customers 
– Accounts 
– Orders 
– Inventory



What is a Service Class?
• Some classes represent work to be performed in an application 
• They know what to do, but they do not hold the data themselves 
• When an application calls the service, they pass the data to the 

service, and the service transforms it in some way 
• Examples: 

– Persistence 
– Loggers 
– Calculation engines



Case Classes
• A representation of a data type that removes a lot of 

boilerplate code 
• Generates JVM-specific convenience methods 
• Makes every class parameter a field 
• Is immutable by default 
• Performs value-based equivalence by default



Case Classes



Case Objects
• If a case class is an instance-based representation of 

a data type, a case object is a representation of a 
data type of which there can only be a single 
instance 

• If you try to create a case class with no parameters, it 
is stateless and should be a case object



Case Objects



• Having completing this lesson, you should be able 
to: 
– Describe when to use case classes and case objects 

instead of regular classes and objects 
– Outline the differences between case classes and objects 

compared to regular classes and objects

Lesson Summary



Apply and Unapply



Lesson Objectives
• After completing this lesson, you should be able to: 
– Illustrate the difference between a type and a term 
– Describe how the apply method works in both objects and 

classes 
– Outline how unapply works



Types versus Terms
• A type is a description of a concept in an application 
– A class is a type 

• A term is a concrete representation of a type 
– Any class instance (including an object) is a term 
– A method is a term, as it is also concrete and “callable”



Calling a Term
• Like some other languages, Scala allows you to 

“call” a term without specifying the method you 
want to call on it



How Did That Work?
• When you create a case class, the compiler generates a companion 

object for the class for you 
• Calling Time(9, 0) is actually calling the companion object Time and 

delegating to the apply() method inside of it.



An Example of apply



Another Example of apply



Unapply Deconstructs a Case Class



• Having completing this lesson, you should be able 
to: 
– Illustrate the difference between a type and a term 
– Describe how the apply method works in both objects and 

classes 
– Outline how unapply works

Lesson Summary



Synthetic Methods



Lesson Objectives
• After completing this lesson, you should be able to: 
– Describe how the Scala compiler generates functionality 

for you 
– Explain what the synthetic equals(), hashCode(), 
toString() and copy() methods do 

– Outline how you would use immutable case classes in a 
program where state is changing



Coding and Maintenance are Expensive
• Writing and maintaining the source code required by 

the JVM for simple data classes is difficult 
• To support the features of case classes, a 

comparable Time class in Java would be over 70 
lines of code



What are Synthetic Methods?
• Scala’s compiler generates this “boilerplate” for you 
• The implementations are rock solid and proven 
– equals() 
– hashCode() 
– toString() 
– copy()



equals()
• This method is required by the JVM, but the default 

implementation only compares whether an instance 
of the class is the exact same instance 

• Scala provides value-based equivalence, allowing 
you to compare whether two different instances of a 
class have the same state



equals()



hashCode()
• This method is required for any class that you might 

want to put into a hashed collection, such as a 
HashMap or HashSet



toString()
• This method is required by the JVM, but the default 

implementation prints out a virtual representation 
of the instance location in memory 

• The synthetic toString() provided by Scala’s 
case class shows you the values inside of the class 

• You can override this to make it even better



toString()



copy()
• This method is not required by the JVM 
• The synthetic copy() provided by Scala’s case 

class allows you to remain immutable and use 
“snapshots” of case classes when state needs to 
change



copy()



• Having completing this lesson, you should be able to: 
– Describe how the Scala compiler generates functionality 

for you 
– Explain what the synthetic equals(), hashCode(), 
toString() and copy() methods do 

– Outline how you would use immutable case classes in a 
program where state is changing

Lesson Summary



Immutability and Thread Safety



Lesson Objectives
• After completing this lesson, you should be able to: 
– Understand basic thread safety in the JVM 
– Describe the importance of immutability in multithreaded 

applications 
– Outline how to use snapshots to preserve thread safety 

with case classes



What is Thread Safety
• The JVM has a well-defined memory model with 

specific guarantees 
• There are two concerns: 

– Synchronize-With: Who is able to change state and in 
what order (locks) 

– Happens-Before: When to publish changes on one thread 
to all other threads (memory barriers)



Names versus Values





The Left Side of the Equals Sign
• Represents a pointer to the current value 
• We want this to be “final” as much as possible, using 

a val 
• Reassignment to a new value is possible when using 

a var



The Right Side of the Equals Sign
• Represents the value of the current state 
• This should always be immutable, meaning that the 

class instance contains only fields that are defined 
as val 

• If not, you must protect the state and who can 
change it using Mutually Exclusive Locks



Using a var for Snapshots
• Allows us to keep the value on the right side of the 

equals immutable, but still change our current state 
by replacing what the var points to with another 
instance 

• The case class copy() method will help you do this



@volatile
• The @volatile annotation must be used when 

you follow the snapshot strategy, to ensure that all 
threads see your updates 

• The case class copy() method will help you do this



@volatile



• Having completing this lesson, you should be able to: 
– Understand basic thread safety in the JVM 
– Describe the importance of immutability in multithreaded 

applications 
– Outline how to use snapshots to preserve thread safety 

with case classes

Lesson Summary



Collections Overview



Lesson Objectives
• After completing this lesson, you should be able to: 

– Understand the structure of the Scala collections hierarchy 
– Describe how to apply functions to data in collections 
– Outline the basics of structural sharing 
– Illustrate the performance characteristics of different data 

structures



Scala Collections



Higher Order Functions
• Scala is a functional programming language 
• We apply functions to data inside of containers 
• There are many higher order functions available to 

you across the collections library



Higher Order Functions



Structural Sharing
• When you create a collection, it is an aggregation of 

references to individual values in the Java heap 
• If you use immutable collections of immutable 

values, those references can be shared between 
collection instances



Structural Sharing



Performance

http://docs.scala-lang.org/overviews/collections/performance-characteristics.html

http://docs.scala-lang.org/overviews/collections/performance-characteristics.html


• Having completing this lesson, you should be able to: 
– Understand the structure of the Scala collections hierarchy 
– Describe how to apply functions to data in collections 
– Outline the basics of structural sharing 
– Illustrate the performance characteristics of different data 

structures

Lesson Summary



Sequences and Sets



Lesson Objectives
• After completing this lesson, you should be able to: 
– Describe the various kinds of sequence collections and 

their properties 
– Outline the desirable properties of the Vector collection 

type 
– Describe the properties of set collections



What is a Sequence?
• An ordered collection of data 
• Duplicates are permitted 
• May or may not be indexed 
• Array, List, Vector 
• The apply method on an instance is a lookup



Array
• A fixed size, ordered sequence of data 
• Very fast on the JVM 
• Values are contiguous in memory 
• Indexed by position



Array



List
• A linked list implementation, with a value and a 

pointer to the next element 
• Theoretically unbounded in size 
• Poor performance as data could be located 

anywhere in memory, and must be accessed via 
“pointer chasing”



List



Vector
• A linked list of 32 element arrays 
• 2.15 billion possible elements 
• Indexed by hashing 
• Good performance across all operations without 

having to copy arrays when more space is needed



What is a Set?
• A “bag” of data, where no duplicates are permitted 
• Order is not guaranteed 
• HashSet, TreeSet, BitSet, KeySet, SortedSet, etc 
• The apply method on an instance checks to see if the 

set contains a value



Set



Set



• Having completing this lesson, you should be able to: 
– Describe the various kinds of sequence collections and 

their properties 
– Outline the desirable properties of the Vector collection 

type 
– Describe the properties of set collections

Lesson Summary



Option



Lesson Objectives
• After completing this lesson, you should be able to: 
– Describe the relevance of Option in the Scala type system 
– Outline how to use Option in your types



Algebraic Data Types (ADTs)
• A distinct set of possible types 
• Intuition: 
– Days of the week 
– Binary light switches



Option
• Not a collection, but a container 
• An ADT representing the existence of a value 
• Some is the representation of a value 
• None is the representation of the absence of a value 
• Allows us to avoid null on the JVM



Option



Option



Option
• Option allows us to create APIs where the possible 

absence of value is encoded in the type system 
• We can then perform behavior without asking 

whether or not the value is null in advance



Option



• Having completing this lesson, you should be able 
to: 
– Describe the relevance of Option in the Scala type system 
– Outline how to use Option in your types

Lesson Summary



Tuples and Maps



Lesson Objectives
• After completing this lesson, you should be able to: 
– Describe what a tuple is and how they are used 
– Outline how to deconstruct tuples 
– Describe the properties of a map



Tuples
• A loose aggregation of values into a single container 
• Can have up to 22 values in Scala 
• Are always used when you see parentheses 

wrapping data without a specific type



Tuples



Tuples
• Can be accessed using a 1-based accessor for each 

value 
• Can be deconstructed into names bound to each 

value in a tuple



Tuples



Tuple2
• Frequently called a pair 
• Have a unique syntax for values



Tuple2



Unapply Deconstructs a Case Class



Maps
• A grouping of data by key to value, which are tuple 

“entries” 
• Allows you to index values by a specific key for fast 

access 
• Common implementations: HashMap, TreeMap



Maps



Maps



Maps



• Having completing this lesson, you should be able 
to: 
– Describe what a tuple is and how they are used 
– Outline how to deconstruct tuples 
– Describe the properties of a map

Lesson Summary



Higher Order Functions



Lesson Objectives
• After completing this lesson, you should be able to: 
– Describe the application of functions to data 
– Outline basic usages of higher order functions in Scala



Higher Order Functions
• A function which takes another function 
• Typically describes the “how” for work to be done in 

a container 
• The function passed to it describes the “what” that 

should be done to elements in the container



map



flatMap



filter



foreach



forall



reduce



fold, foldLeft, foldRight



product



exists



find



groupBy



takeWhile and dropWhile



• Having completing this lesson, you should be able 
to: 
– Describe the application of functions to data 
– Outline basic usages of higher order functions in Scala

Lesson Summary



For Expressions



Lesson Objectives
• After completing this lesson, you should be able to: 
– Understand the relationship between for expressions and 

higher order functions 
– Describe the usage of for expressions



Composition Is Hard
• Trying to put together multiple higher order 

functions into a single expression is difficult 
• For expressions are syntactic sugar that simplifies 

the work of coding a multi-stage transformation



Composing HOFs



For Expressions



Syntax
• Must start with the for keyword 
• Must have generators, using the <- arrow 
• The yield keyword dictates whether or not a new 

value is returned



Syntax
• Syntactic sugar over map, flatMap, withFilter 

and foreach 
• Higher Order Functions have rules 

– If I map over a List, I will get a List 
– The first generator of a for expression follows the same rule 

• Can have guard conditions to apply filters



Filtering



Definitions



Effectful Usages



• Having completing this lesson, you should be able 
to: 
– Understand the relationship between for expressions and 

higher order functions 
– Describe the usage of for expressions

Lesson Summary



Pattern Matching



Lesson Objectives
• After completing this lesson, you should be able to: 
– Describe how to use pattern matching to handle different 

values in different ways 
– Outline how case classes and ADTs help in pattern 

matching 
– Illustrate how to extract values from tuples



What is Pattern Matching?
• Many languages have the concept of switch/case 
• Pattern matching is similar, but can be applied 

across many different types of data 
• Can be embedded within other expressions as a way 

of cleanly expressing conditional logic



The match Keyword



Usage



Pattern Matching is Flexible
• You can match on many different kinds of values 

– Literal values, like “12:00” 
– Use guard conditions to be more specific 
– Match on only some parts of a value 
– More specific cases must come first, more general last 
– If you use the _ or a simple name with no type, both match 

on everything



Exhaustiveness
• When you see the case keyword, pattern matching 

is in play 
• Case classes and ADTs provide compile-time 

exhaustiveness checking that all possible conditions 
have been have been met



Pattern Matching Tuple Values



Pattern Matching HOF Arguments



• Having completing this lesson, you should be able to: 
– Describe how to use pattern matching to handle different 

values in different ways 
– Outline how case classes and ADTs help in pattern 

matching 
– Illustrate how to extract values from tuples

Lesson Summary



Handling Options



Lesson Objectives
• After completing this lesson, you should be able to: 
– Describe how to pattern match on an Option 
– Outline how to use higher order functions on an option to 

avoid null-checking 
– Illustrate how to use for comprehensions to work with 

Option



Pattern Matching an Option



Pattern Matching an Option



Pattern Matching an Option



HOFs and Option



For Expressions and Option



For Expressions and Option



• Having completing this lesson, you should be able to: 
– Describe how to pattern match on an Option 
– Outline how to use higher order functions on an option to 

avoid null-checking 
– Illustrate how to use for comprehensions to work with 

Option

Lesson Summary



Handling Failures



Lesson Objectives
• After completing this lesson, you should be able to: 
– Describe the usage and importance of a Try 
– Describe how to pattern match on a Try 
– Outline how to use higher order functions on a Try 
– Illustrate how to use for comprehensions to work with Try



JVM Exceptions
• They represent runtime failures for various reasons 
– NullPointerException (Runtime) 
– ClassCastException (Runtime) 
– IOException (Checked) 
– When one occurs, control is “thrown” back within a thread 

stack to whomever “catches” it



Catching an Exception



Idiomatic Scala and Exceptions
• In Scala, we do not believe in this approach, as it 

represents a possible “side effect” 
– We want everything in our code to be pure 
– When we interact with libraries or services that may fail, 

we “wrap” the call in a Try to capture the failure



Wrapping a Call in Try



Pattern Matching on Try



Higher Order Functions and Try



Higher Order Functions and Try



For Expressions and Try



• Having completing this lesson, you should be able 
to: 
– Describe the usage and importance of a Try 
– Describe how to pattern match on a Try 
– Outline how to use higher order functions on a Try 
– Illustrate how to use for comprehensions to work with Try

Lesson Summary



Handling Futures



Lesson Objectives
• After completing this lesson, you should be able to: 

– Describe how to use Futures to perform work asynchronously 
– Describe how to pattern match on the result of a Future 
– Outline how to use higher order functions on the result of a 

Future 
– Illustrate how to use for comprehensions to work with 

Futures



Futures
• Allow us to define work that may happen at some 

later time, possibly on another thread 
• Futures return a Try of whether or not the work was 

successfully completed



ExecutionContext
• To use a Future, you must provide a thread pool that 

the Future can use to perform the work 
• I can use an implicit val to declare it one time 

and automatically apply it to all usages within a scope



ExecutionContext



Timeout
• Futures can have a defined amount of time before 

they “time out”, or fail because they have taken too 
long to do their work or be scheduled 

• Scala has a nice DSL for creating such time-based 
values



Timeout



Required Imports



Wrapping a Call in a Future



Pattern Matching on Future



Higher Order Functions and Futures



Higher Order Functions and Futures



For Expressions and Futures



• Having completing this lesson, you should be able to: 
– Describe how to use Futures to perform work asynchronously 
– Describe how to pattern match on the result of a Future 
– Outline how to use higher order functions on the result of a 

Future 
– Illustrate how to use for comprehensions to work with 

Futures

Lesson Summary


