Hadoop MapReduce

What Is MapReduce?

* MapReduce is a method for distributing a task across multiple nodes

= Each node processes data stored on that node
—Where possible

= Consists of two phases:
- Map
- Reduce

MapReduce: Terminology

A job is a ‘full program’
- A complete execution of Mappers and Reducers over a dataset
- In MapReduce 2, the term application is often used in place of ‘job’

A task is the execution of a single Mapper or Reducer over a slice of data

A task attempt is a particular instance of an attempt to execute a task
- There will be at least as many task attempts as there are tasks
- If a task attempt fails, another will be started by the JobTracker

— Speculative execution (see later) can also result in more task attempts
than completed tasks

Hadoop Components: MapReduce

* The Mapper

— Each Map task (typically) operates on a single HDFS
block

— Map tasks (usually) run on the node where the
block is stored

= Shuffle and Sort

— Sorts and consolidates intermediate data from all
mappers

- Happens as Map tasks complete and before Reduce
tasks start

* The Reducer

- Operates on shuffled/sorted intermediate data
(Map task output)

- Produces final output

Reduce

Example: Word Count

Result
aardvark 1
Input Data

cat 1

the cat sat on the mat mat 1
the aardvark sat on the sofa YETS Reduce - 2
sat 2

— //— sofa 1
the 4

Example: The WordCount Mapper

WordCountMapper
output
the 1
cat 1
sat 1
Input Data on 1
«— the 1
[the cat sat on the mat | mat 1
' the aardvark sat on the sofal
the 1
aardvark

sat

on

the

L = L S

sofa

Example: Shuffle & Sort

Mapper Output

the 1

cat 1 .
Intermediate Data

sat 1

on 1 aardvark 1

the 1 cat 1

mat 1 mat 1

the 1 on 1,1

aardvark 1 sat 1,1

sat 1 sofa 1

on 1
the 1,1,1,1

the 1

sofa 1

Example: SumReducer

Reducer Output

aardvark 1

Intermediate Data cat 1 Final Result
sardvark 1 , , aardvark 1
ma

cat 1 cat 1

mat 1 . mat 1
on 2

on

sat 2 sat 2
sofa 1

sofa

the 1 the 4

Mappers Run in Parallel

= Hadoop runs Map tasks on the slave node where the block is stored (when possible)
- Many Mappers can run in parallel
— Minimizes network traffic

Input Data HDFS Blocks L o
Block 3 adipiscing 1,1,1,1
Lorem ipsum dolor sit amet, Lorem ipsum dolor BIOCk 1 aliquet L111...
consectetur adipiscing elit. sit amet, consec
Integer nec odio. Praesent tetur adipisc ing
libero. Sed cursus ante elit. Integer..
dapibus diam. Sed nisi. Nulla
guis sgm at m:_bh elgmer}tum a 1,1,1,1....
}mperdlet. Duis sagl’lctls ac 11111,
ipsum. Praesent mauris. Fusce . . -
nec tellus sed augue semper Sed pretium blandit ad 1,1,1,1,1...
] orci. Ut eu diam at .
porta. Mauris massa. . Block 3 aliguam 1,1,1
Vestibulum lacinia arcu eget pede susci pit li t 1
nulla. Class aptent taciti e BIOCk 3 alique
sociosqu ad litora torquent auctor 11,11
per conubia nostra, per
inceptos himenaeos. Curabitur
sodales ligula in libero. Sed
dignissim lacinia nunc. Aenean quam. In
Curabitur tortor. scelerisque sem at
Pellentesque nibh. Aenean dolor. Maecenas a 111..
quam. In scelerisque sem at mattis. Sed con.. e
dolor. Maecenas mattis. Sed Map aC:i 1,1,1,1..
convallis tristique sem. aliguam 1.1,1
BIOCk 2 amet 1,1,1,1
blandit 1,1,1

Block 1

a
ac

1,11,..
1,1,1,11...

accumsan 1,1

MapReduce: The Mapper

= Hadoop attempts to ensure that Mappers run on nodes which hold their
portion of the data locally, to avoid network traffic

— Multiple Mappers run in parallel, each processing a portion of the input
data

= The Mapper reads data in the form of key/value pairs
- The Mapper may use or completely ignore the input key
- For example, a standard pattern is to read one line of a file at a time
- The key is the byte offset into the file at which the line starts
- The value is the contents of the line itself
- Typically the key is considered irrelevant

* |If the Mapper writes anything out, the output must be in the form of
key/value pairs

MapReduce: The Reducer

= After the Map phase is over, all intermediate values for a given
intermediate key are combined together into a list

= This list is given to a Reducer
- There may be a single Reducer, or multiple Reducers

— All values associated with a particular intermediate key are guaranteed
to go to the same Reducer

- The intermediate keys, and their value lists, are passed to the Reducer
in sorted key order

—This step is known as the ‘shuffle and sort’

= The Reducer outputs zero or more final key/value pairs
- These are written to HDFS

- In practice, the Reducer usually emits a single key/value pair for each
input key

Why Do We Care About Counting Words?

= Word count is challenging over massive amounts of data
- Using a single compute node would be too time-consuming
- Using distributed nodes requires moving data
— Number of unique words can easily exceed available memory
- Would need to store to disk

= Statistics are simple aggregate functions
— Distributive in nature
- e.g., max, min, sum, count

= MapReduce breaks complex tasks down into smaller elements which can be
executed in parallel

= Many common tasks are very similar to word count
-e.g., log file analysis

Review: The MapReduce Flow

Input —)[Input Format }
File(s) ‘l' l' 2
Input Split 1 Input Split 2 Input Split 3
N Yy v
[Record Reader] [Record Reader] [Record Reader]
Mapper Mapper Mapper
Partitioner Partitioner Partitioner

Reducer Reducer ! *
[Output Format] [Output Format]

Output File Output File

A Sample MapReduce Program: WordCount

Let’s have a look at the code for WordCount
—This will demonstrate the Hadoop API

the cat sat on the mat
the aardvark sat on the sofa

-

\Y/ETe]

Reduce

aardvark
cat

mat

on

sat
sofa

the

B R NN R R R

Our MapReduce Program: WordCount

" To inves(gate the API, we will dissect the WordCount program

* This consists of three portions
- The driver code
— Code that runs on the client to configure and submit the job
- The Mapper
- The Reducer

= Before we look at the code, we need to cover some basic Hadoop API
concepts

Getting Data to the Mapper

" The data passed to the Mapper is specified by an InputFormat
- Specified in the driver code
— Defines the location of the input data
- Typically a file or directory
- Determines how to split the input data into input splits
— Each Mapper deals with a single input split
- Creates a RecordReader object

- RecordReader parses the input data into key/value pairs to pass to
the Mapper

Example: TextInputFormat

“TextInputFormat

- The default the cat sat on the mat
— Creates the aardvark sat on
the sofa

LineRecordReader objects

- Treats each \n-terminated line \//—

of a file as a value

- Key is the byte offset of that _
line within the file LineRecordReader

key | value

0 the cat sat on the mat

23 | the aardvark sat on the
sofa

52

Other Standard InputFormats

“"FileInputFormat
- Abstract base class used for all file-based InputFormats

" KeyValueTextInputFormat
- Maps \n-terminated lines as ‘key [separator] value’
- By default, [separator] is a tab

" SequenceFileInputFormat
- Binary file of (key, value) pairs with some additional metadata

" SequenceFileAsTextInputFormat
- Similar, but maps (key.toString (), value.toString())

Keys and Values are Objects

= Keys and values in Hadoop are Java Objects
- Not primitives

= Values are objects which implement Writable

" Keys are objects which implement WritableComparable

Whatis Writable?

" The Writable interface makes serialization quick and easy for Hadoop
= Any value’s type must implement the Writable interface

= Hadoop defines its own ‘box classes’ for strings, integers, and so on
-IntWritable forints
-LongWritable for longs
-FloatWritable for floats
-DoubleWritable for doubles
- Text for strings
- Etc.

WhatisWritableComparable?

“AWritableComparable is a Writable which is also Comparable

-Two WritableComparables can be compared against each other to
determine their ‘order’

- Keys must be WritableComparables because they are passed to
the Reducer in sorted order

- We will talk more about WritableComparables later

* Note that despite their names, all Hadoop box classes implement both
Writable and WritableComparable

—For example, IntWritableisactuallyaWritableComparable

The Driver: Complete Code

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import org.apache.hadoop.mapreduce.Job;import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.util.Tool;

import org.apache.hadoop.util.ToolRunner;

public class WordCount extends Configured implements Tool ({

public static void main(String[] args) throws Exception {
int exitCode = ToolRunner.run(new Configuration(), new WordCount(), args);
System.exit (exitCode) ;

}

public int run(String[] args) throws Exception {
if (args.length !'= 2) {
System.out.printf (
"Usage: %s [generic options] <input dir> <output dir>\n", getClass() .getSimpleName ()) ;
return -1;
}
Job job = new Job(getConf()) ;
job.setJarByClass (WordCount.class) ;
job.setJobName ("Word Count") ;

FileInputFormat.setInputPaths (job, new Path(args[0])) ;
FileOutputFormat.setOutputPath(job, new Path(args[l]));

job.setMapperClass (WordMapper.class) ;
job.setReducerClass (SumReducer.class) ;
job.setMapOutputKeyClass (Text.class) ;
job.setMapOutputValueClass (IntWritable.class) ;

job.setOutputKeyClass (Text.class) ;
job.setOutputValueClass (IntWritable.class) ;

boolean success = job.waitForCompletion (true) ;
return success ? 0 : 1;

Driver Class Definition

public class WordCount extends Configured implements Tool ({

public static void m{
int exitCode = TooO]
System.exit (exitCoq

} The driver class implements the Too1l interface and
paniic e cunseeing| extends the Configured class.

if (args.length != 1
System.out.printf (
"Usage: %s [generic options] <input dir> <output dir>\n", getClass() .getSimpleName()) ;
return -1;
}
Job job = new Job(getConf()) ;
job.setJarByClass (WordCount.class); job.setJobName ("Word Count") ;

FileInputFormat.setInputPaths (job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1l])) ;

job.setMapperClass (WordMapper.class) ;
job.setReducerClass (SumReducer.class) ;
job.setMapOutputKeyClass (Text.class) ;
job.setMapOutputValueClass (IntWritable.class) ;

job.setOutputKeyClass (Text.class) ;
job.setOutputValueClass (IntWritable.class) ;

boolean success = job.waitForCompletion (true) ;
return success ? 0 : 1;

Main Method

public static void main(String[] args) throws Exception ({
int exitCode = ToolRunner.run(new Configuration(),
new WordCount (), args);
System.exit (exitCode) ;

The driver main method calls ToolRunner. run.

Run Method

The driver run method creates, configures, and submits
the job.

public int run(String[] args) throws Exception {

Job job = new Job (getConf()) ;
job.setJarByClass (WordCount.class) ;
job.setJobName ("Word Count") ;

FileInputFormat.setInputPaths (job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1l]))

Creating a New Job Object

* The Job class allows you to set configuration options for your MapReduce
job
—The classes to be used for your Mapper and Reducer
- The input and output directories
- Many other options

= Any options not explicitly set in your driver code will be read from your
Hadoop configuration files

—Usually located in /etc/hadoop/conf

= Any options not specified in your configuration files will use Hadoop’s
default values

" You can also use the Job object to submit the job, control its execution,
and query its state

Configuring the Job: Specifying the InputFormat

* The default InputFormat (TextInputFormat) will be used unless you
specify otherwise

" To use an InputFormat other than the default, use e.g.

job.setInputFormatClass (KeyValueTextInputFormat.class)

Configuring the Job: Determining Which Files To Read

" By default, FileInputFormat.setInputPaths () will read all files
from a specified directory and send them to Mappers

— Exceptions: items whose names begin with a period (.) or underscore
(L)
- Globs can be specified to restrict input
- For example, /2010/*/01/*

= Alternatively, FileInputFormat.addInputPath () can be called
multiple times, specifying a single file or directory each time

* More advanced filtering can be performed by implementing a
PathFilter

- Interface with a method named accept

—Takes a path to a file, returns t rue or false depending on
whether or not the file should be processed

Configuring the Job: Specifying Final Output With OutputFormat

"FileOutputFormat.setOutputPath () specifies the directory to
which the Reducers will write their final output

* The driver can also specify the format of the output data
- Default is a plain text file

— Could be explicitly written as
Jjob.setOutputFormatClass (TextOutputFormat.class)

* We will discuss OutputFormats in more depth in a later chapter

Configuring the Job: Specifying the Mapper and Reducer Classes

job.setMapperClass (WordMapper.class) ;
job.setReducerClass (SumReducer.class) ;

Give the Job object information about which classes are to be

instantiated as the Mapper and Reducer.

Default Mapper and Reducer Classes

= Setting the Mapper and Reducer classes is optional

" If not set in your driver code, Hadoop uses its defaults

- IdentityMapper

mahout an elephant driver

- IdentityReducer

bow

a knot with two loops
and two loose ends

a weapon for shooting
arrows

a bending of the head
or body in respect

map()

]IIHHHHI'}

mahout an elephant driver

a knot with two loops

bow and two loose ends
bow | & Weapon for shooting
arrows
a bending of the head
bow

or body in respect

Configuring the Job: Specifying the Intermediate Data Types

job.setMapOutputKeyClass (Text.class) ;
job.setMapOutputValueClass (IntWritable.class) ;

Specify the types for the intermediate output keys and values

produced by the Mapper.

Configuring the Job: Specifying the Final Output Data Types

‘ Specify the types for the Reducer’s output keys and values. I

job.setOutputKeyClass (Text.class) ;
job.setOutputValueClass (IntWritable.class) ;

Running The Job (1)

Start the job and wait for it to complete. Parameter is a Boolean,
specifying verbosity: if true, display progress to the user. Finally, exit

with a return code.

boolean success = job.waitForCompletion (true) ;
System.exit(success ? 0 : 1);

Running The Job

" There are two ways to run your MapReduce job:
-JjJjob.waitForCompletion ()
- Blocks (waits for the job to complete before continuing)
- JjJob.submit ()
- Does not block (driver code continues as the job is running)

" The client determines the proper division of input data into InputSplits,
and then sends the job information to the JobTracker daemon on the
cluster

ToolRunner Command Line Options

" ToolRunner allows the user to specify configuration options on the
command line

* Commonly used to specify Hadoop properties using the -D flag
- Will override any default or site properties in the configuration
- But will not override those set in the driver code

hadoop jar myjar.jar MyDriver \
-D mapred.reduce. tasks=10 myinputdir myoutputdir

" Note that -D options must appear before any additional program
arguments

= Can specify an XML configuration file with -conf

* Can specify the default filesystem with -£s uri
—-Shortcut for -D fs.default.name=uri

The Mapper: Complete Code

import java.io.IOException;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Mapper;

public class WordMapper extends Mapper<LongWritable, Text, Text,
IntWritable> {
@Override
public void map (LongWritable key, Text value, Context context)
throws IOException, InterruptedException ({

String line = wvalue.toString() ;

for (String word : line.split("\\W+")) {
if (word.length() > 0) {

context.write (new Text (word), new IntWritable(l))

The Mapper: Class Declaration (1)

public class WordMapper extends Mapper< ongiritable, Text, Text, IntiWritable>

Mapper classes extend the Mapper base class.

The Mapper: Class Declaration (2)

Mapper<LongWritable, Text, Text, IntWritable>
Input key and Intermediate key
value types and value types

Specify generic types that declare four type parameters: the
input key and value types, and the output (intermediate)
key and value types. Keys must be

WritableComparable, and values mustbe Writable.

The map Method

public void map (LongWritable key, Text value, Context context)
throws IOException, InterruptedException

The map method is passed a key, a value, and a Context
object. The Context is used to write the intermediate
data. It also contains information about the job’s
configuration.

The map Method: Processing The Line (1)

value is a Text object, so retrieve the string it contains.

The map Method: Processing The Line (2)

for (String word : line.split("\\W+")) {
if (word.length() > 0) {

Split the string up into words using a regular expression
with non-alphanumeric characters as the delimiter, and

then loop through the words.

The map Method: Outputting Intermediate Data

To emit a (key, value) pair, call the write method of the Context
object. The key will be the word itself, the value will be the number 1.

Recall that the output key must be a WritableComparable, and the
value mustbeaWritable.

context.write (new Text (word), new IntWritable(l));

The Reducer: Complete Code

import java.io.IOException;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Reducer;

public class SumReducer extends Reducer<Text, IntWritable, Text, IntWritable>

{

@Override
public void reduce (Text key, Iterable<IntWritable> values,
throws IOException, InterruptedException ({

int wordCount = O;

for (IntWritable value : values) {
wordCount += value.get() ;

}

context.write (key, new IntWritable (wordCount)) ;

Context context)

The Reducer: Class Declaration

public class SumReducer extends Reducer<Text, IntWritable, Text, IntWritable>
Intermediate key Output key and
and value types value types

Reducer classes extend the Reducer base class. The four

generic type parameters are: input (intermediate) key and

value types, and final output key and value types.

The reduce Method

public void reduce (Text key, Iterable<IntWritable> wvalues, Context context)
throws IOException, InterruptedException {

The reduce method receives a key and an Iterable
collection of objects (which are the values emitted from the

Mappers for that key); it also receives a Context object.

The reduce Method: Processing The Values

int wordCount = O;

for (IntWritable value : wvalues) {
wordCount += value.get() ;
}

We use the Java for-each syntax to step through all the elements
in the collection. In our example, we are merely adding all the

values together. We use value.get () to retrieve the actual
numeric value each time.

The reduce Method: Writing The Final Output

Finally, we write the output key-value pair to HDFS using

the write method of our Context object.

context.write (key, new IntWritable (wordCount)) ;

Ensure Types Match (1)

= Mappers and Reducers declare input and output type parameters

" These must match the types used in the class

Input key and

value types \

7<
N
/ ~

public class WordMapper extends/Maﬁﬁe;<LongWritable, Text, Text, IntWritable>
{ Il \\\

~
/ ~

@Override) S.
public void map (LongWritable key, Text value, Context context)
throws IOException, InterruptedException ({

context.write (new Text (word), new IntWritable(l));

-~ ~

———
Output key and
value types

Ensure Types Match (2)

= Qutput types must also match those set in the driver

public class WordMapper extends Mapper<LongWritable,
Text, Text, IntWritable> {

}

/ Mapper

/

public class WordCount ({
public static void main(String[] args) throws ExXception ({

job.setMapOutputKeyClass (Text.class) ;
job.setMapOutputValueClass (IntWritable.class) ;

driver code

job.setOutputKeyClass (Text.class) ;
job.setOutputValueClass (IntWritable.class) ; \\

\
\

public class SumReducer extends Reducer<Text,
IntWritable, Text, IntWritable> {

;

Reducer

What Is The OIld API?

* When Hadoop 0.20 was released, a ‘New API’ was introduced
- Designed to make the API easier to evolve in the future
— Favors abstract classes over interfaces

= Some developers still use the Old API
- Until CDH4, the New API was not absolutely feature-complete

= All the code examples in this course use the New API

New API vs. Old API: Some Key Differences (1)

NewAPl __________________|OdAP

import org.apache.hadoop.mapreduce. * import org.apache.hadoop.mapred. *

Driver code: Driver code:

Configuration conf = new Configuration(); JobConf conf = new JobConf (Driver.class);
Job job = new Job (conf); conf.setSomeProperty(...);
job.setJarByClass (Driver.class) ; ...

job.setSomeProperty(...); JobClient.rundob (conf) ;

job.waitForCompletion (true) ;

Mapper: Mapper:

public class MyMapper extends Mapper { public class MyMapper extends MapReduceBase
implements Mapper {
public void map (Keytype k, Valuetype v,
Context c) { public void map (Keytype k, Valuetype v,
... OutputCollector o, Reporter r) {
c.write (key, wval); ...
} o.collect (key, val);
} }

New API vs. Old API: Some Key Differences (2)

NewAPl __________________|OldAP

Reducer: Reducer:

public class MyReducer extends Reducer { public class MyReducer extends MapReduceBase
implements Reducer {
public void reduce (Keytype k,

Iterable<Valuetype> v, Context c) { public void reduce (Keytype k,
for (Valuetype eachval : v) { Iterator<Valuetype> v,
// process eachval OutputCollector o, Reporter r) {
c.write (key, val); while (v.hasnext ()) {
} // process v.next ()
} o.collect (key, wval);
} }
}
t
setup (Context c) (See later) configure (JobConf job)

cleanup (Context c) (See later) close ()

MRv1 vs MRv2, Old APl vs New API

" There is a lot of confusion about the New and Old APIs, and MapReduce
version 1 and MapReduce version 2

= The chart below should clarify what is available with each version of
MapReduce

MapReduce v1

MapReduce v2

= Summary: Code using either the Old API or the New API will run under
MRv1 and MRv2

The setup Method

" It is common to want your Mapper or Reducer to execute some code
before the map or reduce method is called for the first time

— Initialize data structures
- Read data from an external file
- Set parameters

" The setup method is run before the map or reduce method is called for
the first time

public void setup (Context context)

The cleanup Method

= Similarly, you may wish to perform some action(s) after all the records
have been processed by your Mapper or Reducer

" The cleanup method is called before the Mapper or Reducer terminates

public void cleanup (Context context) throws
IOException, InterruptedException

Passing Parameters

public class MyDriverClass {
public int main(String[] args) throws Exception ({
Configuration conf = new Configuration() ;
conf.setInt ("paramname",h value) ;
Job job = new Job (conf) ;

boolean success = job.waitForCompletion (true) ;
return success ? 0 : 1;

public class MyMapper extends Mapper ({

public void setup (Context context) {
Configuration conf = context.getConfiguration() ;
int myParam = conf.getInt("paramname", 0);

}

public void map...

Reuse of Objects is Good Practice (1)

" |t is generally good practice to reuse objects
- Instead of creating many new objects

= Example: Our original WordCount Mapper code

Each time the map () method is called, we create a new Text

objectand anew IntWritable object.

context.write (new Text (word), new IntWritable(l));

Reuse of Objects is Good Practice (2)

= Instead, this is better practice:

public class WordMapper extends Mapper<LongWritable, Text, Text, IntWritable>
{

private final static IntWritable one = new IntWritable(1l);
private Text wordObject = new Text() ;

Create objects for the key and value outside of your map () method

String line = value.toString() ;

for (String word : line.split("\\W+")) {
if (word.length() > 0) {
wordObject. set (word) ;
context.write (wordObject, one);
}
}

Reuse of Objects is Good Practice (3)

= Instead, this is better practice:

Within the map () method, populate the objects and write them
out. Hadoop will take care of serializing the data so it is perfectly
safe to re-use the objects.

wordObject. set (word) ;
context.write (wordObject, one);

Object Reuse: Caution!

= Hadoop re-uses objects all the time

" For example, each time the Reducer is passed a new value, the same
object is reused

* This can cause subtle bugs in your code

- For example, if you build a list of value objects in the Reducer, each
element of the list will point to the same underlying object

—Unless you do a deep copy

Map-Only MapReduce Jobs

" There are many types of job where only a Mapper is needed

= Examples:
- Image processing
- File format conversion
- Input data sampling
-ETL

Creating Map-Only Jobs

" To create a Map-only job, set the number of Reducers to 0 in your Driver
code

job.setNumReduceTasks (0) ;

= Call the Job . setOutputKeyClass and
Job.setOutputValueClass methods to specify the output types

- Not the Job.setMapOutputKeyClass and
Job.setMapOutputValueClass methods

= Anything written using the Context .write method in the Mapper will
be written to HDFS

— Rather than written as intermediate data
- One file per Mapper will be written

How Many Reducers Do You Need?

= An important consideration when creating your job is to determine the
number of Reducers specified

= Default is a single Reducer

= With a single Reducer, one task receives all keys in sorted order

—This is sometimes advantageous if the output must be in completely
sorted order

— Can cause significant problems if there is a large amount of
intermediate data

- Node on which the Reducer is running may not have enough disk
space to hold all intermediate data

—The Reducer will take a long time to run

Jobs Which Require a Single Reducer

" |If a job needs to output a file where all keys are listed in sorted order, a
single Reducer must be used

= Alternatively, the TotalOrderPartitioner can be used

- Uses an externally generated file which contains information about
intermediate key distribution

- Partitions data such that all keys which go to the first Reducer are
smaller than any which go to the second, etc

- In this way, multiple Reducers can be used
— Concatenating the Reducers’ output files results in a totally ordered list

Jobs Which Require a Fixed Number of Reducers

= Some jobs will require a specific number of Reducers

= Example: a job must output one file per day of the week
- Key will be the weekday
- Seven Reducers will be specified
- A Partitioner will be written which sends one key to each Reducer

Jobs With a Variable Number of Reducers (1)

* Many jobs can be run with a variable number of Reducers

= Developer must decide how many to specify

— Each Reducer should get a reasonable amount of intermediate data, but
not too much

- Chicken-and-egg problem

" Typical way to determine how many Reducers to specify:
- Test the job with a relatively small test data set

- Extrapolate to calculate the amount of intermediate data expected from
the ‘real’ input data

— Use that to calculate the number of Reducers which should be specified

Jobs With a Variable Number of Reducers (2)

" Note: you should take into account the number of Reduce slots likely to be
available on the cluster

—If your job requires one more Reduce slot than there are available, a
second ‘wave’ of Reducers will run

— Consisting just of that single Reducer
- Potentially doubling the amount of time spent on the Reduce phase

—In this case, increasing the number of Reducers further may cut down
the time spent in the Reduce phase

- Two or more waves will run, but the Reducers in each wave will
have to process less data

