Handling Futures

3

Lesson Objectives

* After completing this lesson, you should be able to:
— Describe how to use Futures to perform work asynchronously
— Describe how to pattern match on the result of a Future

— Outline how to use higher order functions on the result of a
Future

— Illustrate how to use for comprehensions to work with
Futures

& Typesafe

Futures

 Allow us to define work that may happen at some
later time, possibly on another thread

* Futures return a Try of whether or not the work was
successfully completed

& Typesafe

ExecutionContext

* To use a Future, you must provide a thread pool that
the Future can use to perform the work

e lcanuseanimplicit wval todeclareitonetime
and automatically apply it to all usages within a scope

& Typesafe

ExecutionContext

import scala.concurrent.ExecutionContext
import java.util.concurrent.ForkJoinPool

implicit val ec: ExecutionContext =
ExecutionContext.fromExecutor (new ForkJoinPool())

& Typesafe

Timeout

* Futures can have a defined amount of time before
they “time out”, or fail because they have taken too
long to do their work or be scheduled

* Scala has a nice DSL for creating such time-based
values

& Typesafe

Timeout

scala> import scala.concurrent.duration._
import scala.concurrent.duration.

scala> implicit val timeout = 1 second
timeout: scala.concurrent.duration.FiniteDuration = 1 second

& Typesafe

import
import
import
import
import
import

Required Imports

scala.concurrent.Future
scala.concurrent.ExecutionContext
java.util.concurrent.ForkJoinPool
scala.util.Failure
gscala.util.Success
scala.concurrent.duration.

& Typesafe

Wrapping a Call in a Future

val f: Future[Int] = Future {
inventoryService.getCurrentInventory(1234567L)

}

& Typesafe

Pattern Matching on Future

scala> val f£: Future[Int] = Future { 1 + 2 + 3 }
f: scala.concurrent.Future[Int] =
scala.concurrent.impl.Promise$DefaultPromisel@8b96fde

scala> f.onComplete {
| case Success(i) => println("onComplete Success: " + i)
| case Failure(f) => println("onComplete Failure: " + f)

|}

onComplete Success: b

& Typesafe

Higher Order Functions and Futures

scala> val g: Future[Int] = Future { 1 + 2 + 3 }

g: scala.concurrent.Future[Int] = ...

scala> g.map(result => println(Mapping: " + result)
Mapping: 6

& Typesafe

Higher Order Functions and Futures

val g: Future[Int] = Future { Thread.sleep(4000); 5 }
g: scala.concurrent.Future[Int] = ...

scala> g.map(result => println(Mapping: " + result)

& Typesafe

For Expressions and Futures

val usdQuote = Future {
connection.getCurrentvValue(USD) }

val chfQuote = Future {
connection.getCurrentValue(CHF) }

val purchase = for {
usd <- usdQuote
chf <- chfQuote if isProfitable(usd, chf)
} vield connection.buy(amount, chf)

& Typesafe

Lesson Summary

* Having completing this lesson, you should be able to:
— Describe how to use Futures to perform work asynchronously
— Describe how to pattern match on the result of a Future

— Outline how to use higher order functions on the result of a
Future

— Illustrate how to use for comprehensions to work with
Futures

& Typesafe

