Pattern Matching

3



Lesson Objectives

 After completing this lesson, you should be able to:

— Describe how to use pattern matching to handle different
values in different ways

— Outline how case classes and ADTs help in pattern
matching

— Illustrate how to extract values from tuples

& Typesafe



What is Pattern Matching?

Many languages have the concept of switch/case

Pattern matching is similar, but can be applied
across many different types of data

Can be embedded within other expressions as a way
of cleanly expressing conditional logic

& Typesafe



The match Keyword

def isCustomer(someValue: Any): Boolean = {
someValue match ({
case cust: Customer => true
case => false
}
}

& Typesafe



Usage

scala> case class Customer(first: String = '
last: String = "")
defined class Customer

scala> Customer (" "Martin"”, "Odersky")
res0: Customer = Customer (Martin,Odersky)

scala> isCustomer(res0)
resl: Boolean = true

scala> isCustomer("Martin Odersky")

res2: Boolean = false
& Typesafe



Pattern Matching is Flexible

* You can match on many different kinds of values
— Literal values, like “12:00”
— Use guard conditions to be more specific
— Match on only some parts of a value
— More specific cases must come first, more general last

— If you use the _ or a simple name with no type, both match
on everything

& Typesafe



Exhaustiveness

* When you see the case keyword, pattern matching
s in play

* Caseclasses and ADTs provide compile-time

exhaustiveness checking that all possible conditions
have been have been met

& Typesafe



Pattern Matching Tuple Values

scala> val tuple = (1, "a", 2, "b")
tuple: (Int, String, Int, String) = (1,a,2,b)

scala> tuple. 3
resQO: Int = 2

scala> val (first, second, third, fourth) = tuple
first: Int = 1

second: String = a

third: Int = 2
fourth: String

b

& Typesafe



Pattern Matching HOF Arguments

scala> 1 to 5

res0: scala.collection.immutable.Range.Inclusive =
Range(l, 2, 3, 4, 5)

scala> res0.reduce((acc, cur) => acc + cur)
resl: Int = 15

scala> resO.foldLeft(0){ case (acc, cur) => acc + cur }
res2: Int = 15

& Typesafe



Lesson Summary

* Having completing this lesson, you should be able to:

— Describe how to use pattern matching to handle different
values in different ways

— Outline how case classes and ADTs help in pattern
matching

— Illustrate how to extract values from tuples

& Typesafe



