Apply and Unapply

3



Lesson Objectives

 After completing this lesson, you should be able to:
— Illustrate the difference between a type and a term

— Describe how the apply method works in both objects and
classes

— Outline how unapply works

& Typesafe



Types versus Terms

* Atypeis adescription of a conceptin an application

— Aclassis atype

* Aterm is a concrete representation of a type
— Any class instance (including an object) is a term
— Amethod is aterm, as it is also concrete and “callable”

& Typesafe



Calling a Term

 Like some other languages, Scala allows you to
“call” a term without specifying the method you

want to call on it

scala> case class Time(hours: Int = 0, minutes: Int = 0)
defined class Time

scala> val time = Time(9, 0)
res0: Time = Time(9, 0)

& Typesafe



How Did That Work?

* When you create a case class, the compiler generates a companion
object for the class for you

« Calling Time (9, 0) isactually callingthe companion object Time and
delegating to the apply () method inside of it.

scala> Time(9)
resO0: Time = Time(9,0)

scala> Time.apply(9)
resl: Time = Time(9,0)

& Typesafe



An Example of apply

object Reverse {
def apply(s: String): String =
s.reverse

}

scala> Reverse("'Hello")
resO: String = olleH

& Typesafe



Another Example of apply

scala> Arrav(l, 2, 3)
resO: Array[Int] = Array(l, 2, 3)

scala> res(0(0)
resl: Int = 1

& Typesafe



Unapply Deconstructs a Case Class

scala> case class Time(hours: Int = 0, minutes: Int = 0)
defined class Time

scala> val time = Time(9, 0)
time: Time = Time(9,0)

scala> Time.unapply(time)
res2: Option[(Int, Int)] = Some((92,0))

& Typesafe



Lesson Summary

* Having completing this lesson, you should be able
to:
— Illustrate the difference between a type and a term

— Describe how the apply method works in both objects and
classes

— Outline how unapply works

& Typesafe



