
Immutable and Mutable Fields



Lesson Objectives
• After completing this lesson, you should be able to: 

– Describe the difference between mutable and immutable 
fields 

– Create fields in Scala classes 
– Describe the difference between class parameters and 

fields 
– Outline how to promote class parameters to fields



What is a Field?
• A value encapsulated within an instance of a class 
– Represents the state of an instance, and therefore of an 

application at a given time 
– Is accessible to the outside world, unless specified 

otherwise



Fields versus Parameters
• Parameters are passed to a class and are only visible 

within a class 
• Fields exist in the body of the class, and are 

accessible to outsiders



Immutable Fields



Mutable Fields



Immutable or Mutable?
• Immutable fields cannot be changed and are 

therefore “threadsafe” in a multithreaded 
environment, such as the JVM 

• Mutable fields can be useful, but require diligence to 
ensure that multiple threads cannot update the field 
at the same time



Use Immutable By Default
• It is easier to reason about immutable fields and 

classes that only contain immutable fields 
• Scala makes all class parameters immutable by 

default



Specify Types
• Scala has “type inference” 
• It is a good habit to be specific about types anyway



Promoting Class Parameters
• If you want to make a parameter passed to a class 

constructor into a publicly visible field, add the val 
keyword in front of it 

• The Scala compiler will generate an accessor 
method for you, and other class instances can now 
ask for the current state of the promoted field



Promoting Class Parameters



• Having completing this lesson, you should be able to: 
– Describe the difference between mutable and immutable 

fields 
– Create fields in Scala classes 
– Describe the difference between class parameters and 

fields 
– Outline how to promote class parameters to fields

Lesson Summary


