
Dataflow

HEATHER MILLER

open issuesin

PHILIPP HALLER

This talk

Historical
Sampling

Academia,
lately

Some
of our
efforts

What’s up in
industry

Where to
take it?

(timeline)

But first...
Let’s try to define
“Dataflow”

Dataflowdefining
Seems easy enough, right?

So, maybe it’s best to agree that we’ll probably
never agree on an exact definition of “dataflow”

Actually, not really.
Creator of “flow-based programming” paradigm, when
asked about relationship with dataflow:

It's just that, over the last several decades, so many

different approaches all described themselves as

data flow, that my feeling was that the term had

become so broad as to become almost meaningless.

You will find that much of the early work was done

using this title, or phrases that included it.

“
Paul Morrison, 2010

Dataflowdefining

So let’s roll with something that most people
can agree with.

(Thoughout this talk, I’ll be tightening and
loosening this definition)

Dataflowdefining
First pass:

http://stackoverflow.com/questions/461796/dataflow-programming-languages/949771#949771

(let’s contrast with control flow)

In a control flow language, you have a stream of instructions

which operate on external data. Conditional execution, jumps and

procedure calls change the instruction stream to be executed.

This could be seen as instructions flowing through data
“

In a dataflow language, you have a stream of data which is passed
from instruction to instruction to be processed. Conditional
execution, jumps and procedure calls route the data to different instructions. This could be seen as data flowing through otherwise static instructions like how electrical signals flow through circuits or water flows through pipes.

“

(Loosely)

http://stackoverflow.com/questions/461796/dataflow-programming-languages/949771#949771

More precisely...

Program represented by a directed graph.

Nodes of the graph represent operations.

The edges between the nodes represent
data dependencies. (FIFO)

Conceptually, data flows along the edges.

dataflow always:

More precisely...

Deterministic

dataflow usually:

Based on single-assignment values/collections

Lightweight concurrency

Extension of functional programming

Parallelism implicit, thanks to data dependencies

Concurrent. Declarative.
Focus: concurrent/parallel
FP extended with (lightweight) threads and
dataflow values (single-assignment)

Determinism: any concurrent execution always
gives the same results (or all executions don’t
terminate normally)

Limited: can’t model client/server

Race conditions impossible
Implicit parallelism for FP code

Advantages:

oz-like

val	
 x	
 =	
 future(1)	

val	
 y	
 =	
 future(2)	

val	
 z	
 =	
 future(x	
 +	
 y)	

println(z)

ExampleOzma

The type of x is Int, not Future[Int]
Futures are lightweight tasks, not OS threads

Instead of blocking, post/register continuation
with future’s remaining job to dataflow variable

This talk

Historical
Sampling

Academia,
lately

Some
of our
efforts

What’s up in
industry

Where to
take it?

(timeline)

Now,
Let’s look at the
motivation behind
Dataflow Research

Glimpse intoDataflow History
70-80s: dataflow computer architectures. Lead to
need for new dataflow languages.

Due to required properties of dataflow languages,
the choice of paradigm was functional.

(freedom from side effects, effect locality, single
assignment)

goal then: exploit parallelism in a
natural to program way

Similar to today, right? But then, special dataflow
architectures were required, and parallel architectures
were far from ubiquitous.

this stuff is alsoDataflow

Glimpse intoDataflow History
90s: cost-effective dataflow hardware did not
materialize, so for parallelism, dataflow seemed lost.

Shift to make use of these dataflow ideas in the
form of visual dataflow programming languages.

but now: we still want to exploit
parallelism in a natural to program way

Today: attempts to provide dataflow-esque models
on modern general-purpose platforms, attempts to
distribute dataflow

This talk

Historical
Sampling

Academia,
lately

Some
of our
efforts

What’s up in
industry

Where to
take it?

(timeline)

Great,
But what kind of
dataflow research has
academia been up to
lately?

Why Do We Care?

Potential to simplify parallel programming
 No race conditions
 Simple debugging

Smooth transition from standard FP

(about dataflow now)

Glimpse intoCurrent Dataflow Work
Provide dataflow programming models in
mainstream languages (Java, C++)

Distribute dataflow (e.g., CnC)

Can we/should we completely decouple
from languages and compilers?

(1) DSLs, (2) modern languages good
enough?, (3) middle ground, language design

OPEN QUESTION:

This talk

Historical
Sampling

Academia,
lately

Some
of our
efforts

What’s up in
industry

Where to
take it?

(timeline)

Btw,
FlowCollections bring
some nice properties
to the table

Dataflow Collections
• Collections of dataflow variables

• E.g., for number crunching

• Problem:

• Creating a dataflow variable per data
element prohibitively expensive
(allocation + indirection + GC overhead)

• Idea: dedicated dataflow collections

• Deterministic (consistent with classic
dataflow)

• Lock-free

FlowSeqs
In order to guarantee determinism in our
library-based framework, had to introduce the
following interface.

interface

Append (<<), concurrent insert

foreach, register callbacks (that is, take a function and apply it

to all elements). Returns a Future[Int], completed with the #
elements processed

aggregate, like fold, includes operator which combines
aggregations and returns a Future[] representing the final
aggregation

seal, disallows further appends, discards registered foreach
operations, allows aggregate to complete.

FlowSeqs
Ordered sequences with parallel bulk operations

Related: Scala’s parallel collections

!

Main difference: no barriers after bulk ops

!

Call to map returns immediately, yielding a

FlowSeq whose elements are well-defined, but
not yet computed

val	
 res:	
 ParSeq[Int]	
 =	
 myList.par.map(transform)

val	
 res:	
 FlowSeq[Int]	
 =	
 myFlowSeq.map(transform)

Prokopec et al., A Generic Parallel Collection
Framework, EuroPar’11

FlowSeqs: Barrier Freedom

• All calls to map return immediately

• As soon as an element/block has been
transformed using transform1, it flows to
the next “processing step”, transform2

val	
 res:	
 FlowSeq[Int]	
 =	
 myFlowSeq.map(transform1)	

val	
 final	
 =	
 res.map(transform2)

wait for
all blocks

FlowSeqs: Synchronization
• Can insert barriers explicitly

• blocking waits until all blocks computed

• Some operations return futures instead

val	
 res:	
 FlowSeq[Int]	
 =	
 myFlowSeq.map(transform1)	

val	
 final	
 =	
 res.map(transform2)	

val	
 nonFlowSeq	
 =	
 final.blocking	

Dependency Tracking

• Rectangle = block (chunk) of internal data
array, computed by single worker thread

• Circles = jobs

• gray: submitted for execution/executing

• white: some required data not yet
available

Dependency	

tracking per

block

Dependency Tracking

1. Both blocks not yet computed

2. Job for first block scheduled for execution;
second job added to first job’s dependency
queue

3. First block completed; second job
scheduled for execution

4. Both blocks completed

Implementation
• Lock-free implementation in Scala

• Uses JVM intrinsics like CAS via
sun.misc.Unsafe

• JDK 7 ForkJoinPool as execution
environment

• Micro benchmarks comparing to Scala’s
parallel collections

Benchmarks
Scalar product

val	
 x	
 =	
 FlowSeq.tabulate(size)(x	
 =>	
 x*x)	

val	
 y	
 =	
 FlowSeq.tabulate(size)(x	
 =>	
 x*x)	

!
(x	
 zip	
 y).map(x	
 =>	
 x._1	
 *	
 x._2).fold(0)(_	
 +	
 _).blocking	
 //	
 OR 

(x	
 zipMap	
 y)(_	
 *	
).fold(0)(
 +	
 _).blocking	
 //	
 OR	

!
(x	
 zipMapFold	
 y)(_	
 *	
)(0)(
 +	
 _).blocking	

where

x.zipMap(y)(f)	
 <-­‐-­‐>	
 x.zip(y).map(f.tupled)	

x.zipMapFold(y)(f)(z)(g)	
 <-­‐-­‐>	
 x.zip(y).map(f.tupled).fold(z)(g)	

Function
that takes a tuple as a

parameterFunction that takes
two parameters

Benchmark Results
Scalar product (size = 107)

Without kernel fusion a majority of time spent in GC!

The Cost of Ordering

1 2 4 8
10

1

10
2

10
3

10
4

32−core Xeon

Number of CPUs

Java LTQ
SingleLane FlowPool
MultiLane FlowPool

1 2 4 8
10

1

10
2

10
3

10
4

4−core i7

Number of CPUs

Java LTQ
SingleLane FlowPool
MultiLane FlowPool

1 2 4 8 16 32
10

2

10
3

10
4

UltraSPARC T2

Number of CPUs

E
xe

cu
tio

n
 T

im
e

 [
m

s]

Java LTQ
SingleLane FlowPool
MultiLane FlowPool

• FlowPools: unordered FlowSeqs

• Benchmark: create and map

Experience
FlowPools and FlowSeqs have some things in
common with JDK 8’s streams (package
java.util.stream)

• Give up some amount of determinism

• To reduce object creations and GC overhead, Java
streams are not data structures, but only views that
process elements on demand

• Computation only kicked off when a terminal
operation, such as sum or reduce, is called

Applying FlowSeqs
• FlowSeqs are useful in the context of

another dataflow-esque model: Rx
(Reactive Extensions)

• What is Rx?

• Programming model based on observable
data streams, such as event sources

• Only minimal requirements on host
language

• There are implementations for most
mainstream programming languages

Why Rx?

• Principled approach to composing
observable data streams

• A very general model for push-based,
high-volume data streams

• Language-agnostic

• Many industrial applications

Rx Basics
trait Observable[T] { !
 def subscribe(observer: Observer[T]): Disposable!
}!
!
trait Observer[T] { !
 def onNext(value: T): Unit !
 def onError(error: Exception): Unit !
 def onCompleted(): Unit!
}!
!
trait Disposable { !
 def dispose(): Unit!
}

Rx: Behavioral Assumptions
• Calls to an instance of Observer[T] should follow

the regular expression onNext(t)* (onCompleted() |
onError(e))?

• Implementations of Observer[T] can be assumed
to be synchronized; conceptually they run under
a lock

• Resources associated with an observer should be
cleaned up when onError or onCompleted is
called. In particular, the subscription returned by
the subscribe call of the observer will be disposed
of by the observable as soon as the stream
completes.

Implementing Observables

• Now we have the interfaces

• Meijer describes a number of
combinators to compose observables

• Remaining challenge: efficient
implementations of data processing steps

• This is where FlowSeqs come in!

Observable FlowSeqs
• Ongoing work

• Goal: Efficient parallel stream processing
integrated with Rx model

• Idea: Turn FlowSeqs into Observables

• Seal corresponds to completing a stream

• Required machinery already in place, but
so far only internal to FlowSeq
implementation

• Combinators on the obtained streams can
be implemented using FlowSeq’s
combinators

This talk

Historical
Sampling

Academia,
lately

Some
of our
efforts

What’s up in
industry

Where to
take it?

(timeline)

So,
What’s industry’s take
on all of this?

What’s Hot in Industry?
• Typically dataflow properties relaxed

• Library implementations

• Try to incorporate ideas into mainstream
runtime systems

• Lots of libraries and frameworks that are
similar to dataflow programming models

• Rx, JDK 8 Streams, FlumeJava, Futures/
Promises, Storm, Spark, ...

Map
Big

Small
Determ. Non-determ.

Spark (Streaming)

CnC
FlowSeqs

I-structures

Oz dataflow vars Futures

JDK8 Streams

FlumeJava

Rx
Storm

This talk

Historical
Sampling

Academia,
lately

Some
of our
efforts

What’s up in
industry

Where to
take it?

(timeline)

Phew, ok
So where are some
places we can take
Dataflow?

• How (much) should this map inform
research directions?

• Is transitioning from small to big data
important?

• Should a system provide controlled non-
determinism?

OPEN QUESTIONS:

WHY DON’T WE SEE THE SAME THING
HAPPENING IN MULTICORE?

whY IS DATA FLOW SUCH A POPULAR IDEA IN
DISTRIBUTED SYSTEMS?

• Are correct-by-construction programs
feasible in a library-based approach to
dataflow?

• What kind of static checking is most useful
for dataflow programs?

• Which types? Which effects?

• Which other programming models would
be interesting to integrate with dataflow?

OPEN QUESTIONS:

Questions?

Dataflow vs. Stream Processing
• Stream Processing:

• Works well for DSP or GPU-type applications
(image, video, and digital signal processing)

• Regular and repeating computations (stream
graph often static): task, data, and pipeline
parallelism

• Example: StreamIt’s optimizations

• Coarsen: fuse stateless sections of the graph

• Data parallelize: parallelize stateless filters

• Software pipeline: parallelize stateful filters

Sacrifice flexibility to
enable more optimizations

• Dataflow:

• Flow graph typically dynamically created/
changed

• Flow graph often implicit (example: Oz)

• Also used for symbolic computations,
stream processing focuses on number
crunching, filters, etc., instead

• Challenges:

• Optimization (hybrid static/dynamic?)

• Language vs. library

Dataflow vs. Stream Processing

