OPEN ISSUES
“DATAFLOW

HEATHER MILLER
PHILIPP HALLER

This tatle
(timeline)

Historical Acader ra scme Vs apin Where to
Sampling lrelv of our Gusry take 1t”

Let®¥'ery to define
‘Dataflow’

It's just that, over the last several decades, sO many
different approaches all described themselves as
data flow, that my feeling was that the term had
become so broad as to become almost meaningless.
You will find that much of the early work was done
using this title, or phrases that included it.

Paul Morrison, 2010

DEFINING

SO let's roll with something that most people
can agree with.

‘ In a control flow language, you have a stream of instructions

s : : 2nd
which operate on external data. Conditional execution, jumps

rocedure - |
?‘his could be seen as instructions flowing t

In a dataflow language, you have a stream of data which is passed

from instruction to instruction to be processed. Conditional
execution, jumps and procedure calls route the data to different
Instructions. This could be seen as data flowing through otherwise

static instructions like how electrical signals flow through circuits
or water flows through pipes.

http://stackoverflow.com/questions/461796/dataflow-programming-languages/949771#949771

DATAFLOW ALWAYS:

= Program represented by a directed graph.

= Nodes of the graph represent operations.

= [Ne edges between the nodes represent
data dependencies. (FIFO)

= Conceptually, data flows along the eages.

DATAFLOW USUALLY:

= Deterministic
== Based on single-assignment values/collections
= | 1ghtweight concurrency

= Parallelism implicit, thanks to data dependencies

= Extension of functional programming

LIMITED: CAN’'T MODEL CLIENT/SERVER

EXAMPLE

val x = future(l)

val y = future(2)

val z = future(x + y)
println(z)

== The type of X is Int, not Future[Int]
== Futures are lightweight tasks, not OS threads

== Jnstead of blocking, post/register continuation
with future's remaining job to datatflow variable

This tatle
(timeline)

Historical Acade Y13, Sone Whatsupin Where to

Sampling [l <[67 I e t%gér igle| sﬁ;{ take 1t/

mOtlvatlon behind
Datatlow Research

GLIMDSE INTO

/0-30s: dataflow computer architectures. Lead to
need for new dataflow languages.

Due to required properties of dataflow languages,
the choice of paradigm was functional.

(freedom from side effects, effect locality, single
assignment)

GOAL THEN: EXPLOIT PARALLELISMIN A
NATURAL TO PROGRAM WAY

Similar to today, right? But then, special dataflow

architectures were required, and parallel architectures
were far from ubiquitous.

H

thMasker — | mthl ozme)

&whwmww&b

2 @00000000000000 ¢

28=

- - "“

MOUW N O _“—
-.“ -
MO Contrn. VD! ba Dt VI0H b S

~Nh— NS Poch

MO0 Poly MIDK o Poly . Widl Bvent
M Moso Vit 0 Vokces Nowe Equs’

4 < - - ——
“ 321
4]

Note Event Noelobt Sweg o By

Bysan b By Ve o Poly 51 Tore .

|

’gm;

[
3
0

WERle et MBI Ou.| WROu 05

MIDI
Piteh
input

/
AL

notein
MIDI —
Velooity select O

input
| Attack envelope

Release envelope

X 481 -"’"'nl’}nilr

e

= Carrier
ool oscillator
Create amplitude envelope

Audio Output,
on/0ff svnteh

GLIMDSE INTO

-~ 90s: cost-effective dataflow hardware did not

materialize, so for parallelism, dataflow seemed lost.

Shift to make use of these dataflow 1deas in the
form of visual dataflow programming languages.

BUT NOW: WE STILL WANT TO EXPLOIT
PARALLELISM IN A NATURAL TO PROGRAM WAY

.. Today: attempts to provide dataflow-esque models

on modern g%?g;gl-ggmgggpLa;fqrms, attempts to
distribute datatlow

This tatle
| (timeline)

Historical Acaden.ia, s-re Jratsupin Where to

Sampling lately Sf g i \}\I} uao r{(il’l d Oafke 1t7
datatlow research has
academila been up to
lately?

(ABOUT DATAFLOW NOW)

== Potential to simplify parallel programming
= [NO race conditions

- SiImple debugging

= Smooth transition from standard FP

GLIMPSE INTNH

__ Provide datatflow programming models 1n
mainstream languages (Java, C++)

= Distribute dataflow (e.g., CnC)

OPEN QUESTION:

__ Can we/should we completely decouple
from languages and compilers?

(1) DSLs, (2) modern languages good
enough?, (3) middle ground, language design

L T .

Historical
Sampling

Academia, o n> Whatsupin Where to
lately of our industry take 1t?

Eow Collections bring
sOMme nice properties
to the table

® (Collections of dataflow variables
® [g, for number crunching
® Problem:

® (Creating a dataflow variable per data
element prohibitively expensive
(allocation + indirection + GC overhead)

® JIdea: dedicated dataflow collections

® Decterministic (consistent with classic
dataflow)

® [.Oock-Iree

INTERFACE

= [N order to guarantee determinism in our
library-based framework, had to introduce the
following intertace.

e Append (<<), concurrent insert

e foreach, register callbacks (that is, take a function and apply it

to all elements). Returns a Future[Int], completed with the #
elements processed

e qggregate, like fold, includes operator which combines
aggregations and returns a Future|] representing the final
aggregation

e Sedl, disallows further appends, discards registered foreach
operations, allows aggregate to complete.

Prokopec et al., A Generic Parallel Collection

Framework, EuroPar’ | |

Ordered sequences with pargeel bulk operations

Related: Scala's parallel @ollections

val res: ParSeq[Int] = myList.par.map(transform)

Main difference: no barriers after bulk ops
myFlowSeq.map(transform)

val res: FlowSeq[Int]

= Call to map returns immediately, yielding a

FlowSeqg whose elements are well-defined, but
not yet computed

wait for ps.map fs.map
all blocks

(a) ParSeq (b) FlowSeq

e Can insert barriers explicitly
® plocking waits until all blocks computed
® Some operations return futures instead
val res: FlowSeq[Int] = myFlowSeq.map(transforml)

val final = res.map(transform2)
val nonFlowSeq = final.blocking

Dependency
tracking per
block

State 1

State 2

State 3

State 4

State 2

® [ock-free implementation in Scala

® Uses JVM intrinsics like CAS via
sun.misc.Unsare

e JDK 7/ ForkdJoinPool as execution
environment

e Micro benchmarks comparing to Scala's
parallel collections

Scalar product

FlowSeqg.tabulate(size)(x => x*Xx)
FlowSeqg.tabulate(size)(x => x*x)

val x
val y

(x zip y).map(x => x. 1 *¥ x. 2).fold(©)(_ + _).blocking
(x zipMap y)(_ * _).fold(©)(_ + _).blocking

(x zipMapFold y)(_ *)(©)(_ + _).blocking

Function

. that takes a tuple as a
Function that takes

parameter

two parameters Whe re

X.zipMap(y)(f) <--> x.zip(y).map(f.tupled)
X.zipMapFold(y)(f)(z)(g) <--> x.zip(y).map(f.tupled).fold(z)(g)

® FlowSeq
4 FS (zipMap)
B FS (zipMapFold)

I |
1 2 4

parallelization level

(a) Execution Time

® FlowSeq

4 FS (zipMap)

% FS (zipMapFold)
~+ ParArray

parallelization level

(b) GC Time

UltraSPARC T2 4—core i7 32—-core Xeon

%)
E
o)
£
|_
C
9
5
o)
@
>
(NN

2 4
Number of CPUs Number of CPUs Number of CPUs

FlowPools and Flowsegs have some things in
common with JDK 8's streams (package
java.util.stream)

e (lve up some amount of determinism

® [0 reduce object creations and GC overhead, Java
streams are not data structures, but only views that
process elements on demand

e Computation only kicked off when a terminal
operation, such as sum or reduce, 1s called

FlowSeqgs are useful in the context of
another dataflow-esque model: Rx
(Reactive Extensions)

What 1s Rx?

Programming model based on observable
data streams, such as event sources

Only minimal requirements on host
language

® [here are implementations for most
mainstream programming languages

Principled approach to composing
observable data streams

A very general model for push-based,
high-volume data streams

Language-agnostic

Many industrial applications

trait Observable[T] {
def subscribe(observer: Observer[T]): Disposable

}

trait Observer[T] {
def onNext(value: T): Unit
def onError(error: Exception): Unit
def onCompleted(): Unit

}

trait Disposable {
def dispose(): Unit
}

® (Calls to an instance of Observer|/T] should follow

the regular expression onNext(t)* (onCompleted() |
onkrror(e))?

o [Implementations of Observer[T] can be assumed
to be synchronized; conceptually they run under
a lock

® Resources assoclated with an observer should be
cleaned up when onError or onCompleted 1S
called. In particular, the subscription returned by
the subscribe call of the observer will be disposed
of by the observable as soon as the stream
completes.

Now we have the intertfaces

Meijer describes a number of
combinators to compose observables

Remaining challenge: efficient
Implementations of data processing steps

This 1s where Flowseqgs come 1nl

Ongoing work

Goal: Efficient parallel stream processing
INntegrated with Rx model

Idea: Turn Flowseqgs into Observables
® Seal corresponds to completing a stream

Required machinery already in place, but
so far only internal to FlowSeq
Implementation

Combinators on the obtained streams can
be implemented using Flowseq's
combinators

This tatle
(timeline)

Historical Academiq, 7 x e What's up in Where to
Sampling lately industr fake 1t?

at's mdvustry S lake
on all of this?

Typically dataflow properties relaxed
Library implementations

Try to incorporate ideas into mainstream
runtime systems

Lots of libraries and frameworks that are
similar to dataflow programming models

e Rx JDK 8 Streams, FlumeJava, Futures/
Promises, storm, Spark, ...

Big

Small ¥

< >

Determ. Non-determ.

This tatle
(timeline)

Historical Academia, ~z»~¢ VTwat; 110 Where to
Sampling lately gﬁém indasuy take 1t/
where are some

places we can take
Datatlow?

OPEN QUESTIONS:

WHY IS DATA FLOW SUCH A POPULAR IDEA IN
DISTRIBUTED SYSTEMS?

WHY DON’T WE SEE THE SAME THING
HAPPENING IN MULTICORE?

OPEN QUESTIONS:

® Are correct-by-construction programs

feasible 1n a library-based approach to
dataflow?

e What kind of static checking is most useful
for dataflow programs?

e Which types’ Which effects?

e \WVhich other programming models would
be interesting to integrate with datatflow?

QUESTIONS?

Sacrifice flexibility to

® Stream Processing:

enable more optimizations

e Works well for DSP or GPU-type
(Image, video, and digital signal proc

® Regular and repeating computationsjstream
graph often static): task, data, and pipeline
parallelism

e Example: Streamlt's optimizations
e Coarsen: fuse stateless sections of the graph
® Data parallelize: parallelize stateless filters

® Software pipeline: parallelize stateful filters

e Dataflow:

e Flow graph typically dynamically created/
changed

e Flow graph often implicit (example: Oz)

® Also used for symbolic computations,
stream processing focuses on number
crunching, filters, etc., instead

e Challenges:
e Optimization (hybrid static/dynamic?)

® [anguage vs. library

