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But first...
Let’s try to define 
“Dataflow”



Dataflowdefining
Seems easy enough, right?

So, maybe it’s best to agree that we’ll probably  
never agree on an exact definition of “dataflow”

Actually, not really.
Creator of “flow-based programming” paradigm, when 
asked about relationship with dataflow:

It's just that, over the last several decades, so many 

different approaches all described themselves as 

data flow, that my feeling was that the term had 

become so broad as to become almost meaningless. 

You will find that much of the early work was done 

using this title, or phrases that included it.

“
Paul Morrison, 2010



Dataflowdefining

So let’s roll with something that most people 
can agree with.

(Thoughout this talk, I’ll be tightening and 
loosening this definition)



Dataflowdefining
First pass:

http://stackoverflow.com/questions/461796/dataflow-programming-languages/949771#949771

(let’s contrast with control flow)

In a control flow language, you have a stream of instructions 

which operate on external data. Conditional execution, jumps and 

procedure calls change the instruction stream to be executed. 

This could be seen as instructions flowing through data
“

In a dataflow language, you have a stream of data which is passed 
from instruction to instruction to be processed. Conditional 
execution, jumps and procedure calls route the data to different instructions. This could be seen as data flowing through otherwise static instructions like how electrical signals flow through circuits or water flows through pipes.

“

(Loosely)

http://stackoverflow.com/questions/461796/dataflow-programming-languages/949771#949771


More precisely...

Program represented by a directed graph.

Nodes of the graph represent operations.

The edges between the nodes represent 
data dependencies. (FIFO)

Conceptually, data flows along the edges.

dataflow always:



More precisely...

Deterministic

dataflow usually:

Based on single-assignment values/collections

Lightweight concurrency

Extension of functional programming

Parallelism implicit, thanks to data dependencies



Concurrent. Declarative.
Focus: concurrent/parallel
FP extended with (lightweight) threads and 
dataflow values (single-assignment)

Determinism: any concurrent execution always 
gives the same results (or all executions don’t 
terminate normally)

Limited: can’t model client/server

Race conditions impossible
Implicit parallelism for FP code

Advantages:

oz-like



val	
  x	
  =	
  future(1)	
  
val	
  y	
  =	
  future(2)	
  
val	
  z	
  =	
  future(x	
  +	
  y)	
  
println(z)

ExampleOzma

The type of x is Int, not Future[Int]
Futures are lightweight tasks, not OS threads

Instead of blocking, post/register continuation 
with future’s remaining job to dataflow variable
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Now,
Let’s look at the 
motivation behind 
Dataflow Research



Glimpse intoDataflow History
70-80s: dataflow computer architectures. Lead to 
need for new dataflow languages.

Due to required properties of dataflow languages, 
the choice of paradigm was functional.

(freedom from side effects, effect locality, single 
assignment)

goal then: exploit parallelism in a 
natural to program way

Similar to today, right? But then, special dataflow 
architectures were required, and parallel architectures 
were far from ubiquitous.



this stuff is alsoDataflow



Glimpse intoDataflow History
90s: cost-effective dataflow hardware did not 
materialize, so for parallelism, dataflow seemed lost.

Shift to make use of these dataflow ideas in the 
form of visual dataflow programming languages.

but now: we still want to exploit 
parallelism in a natural to program way

Today: attempts to provide dataflow-esque models 
on modern general-purpose platforms, attempts to 
distribute dataflow
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Great,
But what kind of 
dataflow research has 
academia been up to 
lately?



Why Do We Care?

Potential to simplify parallel programming 
     No race conditions 
     Simple debugging 

Smooth transition from standard FP

(about dataflow now)



Glimpse intoCurrent Dataflow Work
Provide dataflow programming models in 
mainstream languages (Java, C++)

Distribute dataflow (e.g., CnC)

Can we/should we completely decouple 
from languages and compilers?

(1) DSLs, (2) modern languages good 
enough?, (3) middle ground, language design

OPEN QUESTION:
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Btw,
FlowCollections bring 
some nice properties 
to the table



Dataflow Collections
• Collections of dataflow variables 

• E.g., for number crunching 

• Problem: 

• Creating a dataflow variable per data 
element prohibitively expensive 
(allocation + indirection + GC overhead) 

• Idea: dedicated dataflow collections 

• Deterministic (consistent with classic 
dataflow) 

• Lock-free



FlowSeqs
In order to guarantee determinism in our 
library-based framework, had to introduce the 
following interface. 

interface

Append (<<), concurrent insert

foreach, register callbacks (that is, take a function and apply it 

to all elements). Returns a Future[Int], completed with the # 
elements processed

aggregate, like fold, includes operator which combines 
aggregations and returns a Future[] representing the final 
aggregation

seal, disallows further appends, discards registered foreach 
operations, allows aggregate to complete.



FlowSeqs
Ordered sequences with parallel bulk operations 

Related: Scala’s parallel collections 

!

Main difference: no barriers after bulk ops 

!

Call to map returns immediately, yielding a 

FlowSeq whose elements are well-defined, but 
not yet computed

val	
  res:	
  ParSeq[Int]	
  =	
  myList.par.map(transform)

val	
  res:	
  FlowSeq[Int]	
  =	
  myFlowSeq.map(transform)

Prokopec et al., A Generic Parallel Collection 
Framework, EuroPar’11



FlowSeqs: Barrier Freedom

• All calls to map return immediately 

• As soon as an element/block has been 
transformed using transform1, it flows to 
the next “processing step”, transform2

val	
  res:	
  FlowSeq[Int]	
  =	
  myFlowSeq.map(transform1)	
  
val	
  final	
  =	
  res.map(transform2)

wait for 
all blocks



FlowSeqs: Synchronization
• Can insert barriers explicitly 

• blocking waits until all blocks computed 

• Some operations return futures instead

val	
  res:	
  FlowSeq[Int]	
  =	
  myFlowSeq.map(transform1)	
  
val	
  final	
  =	
  res.map(transform2)	
  
val	
  nonFlowSeq	
  =	
  final.blocking	
  



Dependency Tracking

• Rectangle = block (chunk) of internal data 
array, computed by single worker thread 

• Circles = jobs 

• gray: submitted for execution/executing 

• white: some required data not yet 
available

Dependency	


tracking per 

block



Dependency Tracking

1. Both blocks not yet computed 

2. Job for first block scheduled for execution; 
second job added to first job’s dependency 
queue 

3. First block completed; second job 
scheduled for execution 

4. Both blocks completed



Implementation
• Lock-free implementation in Scala 

• Uses JVM intrinsics like CAS via 
sun.misc.Unsafe 

• JDK 7 ForkJoinPool as execution 
environment 

• Micro benchmarks comparing to Scala’s 
parallel collections



Benchmarks
Scalar product

val	
  x	
  =	
  FlowSeq.tabulate(size)(x	
  =>	
  x*x)	
  
val	
  y	
  =	
  FlowSeq.tabulate(size)(x	
  =>	
  x*x)	
  
!
(x	
  zip	
  y).map(x	
  =>	
  x._1	
  *	
  x._2).fold(0)(_	
  +	
  _).blocking	
  //	
  OR 

(x	
  zipMap	
  y)(_	
  *	
  _).fold(0)(_	
  +	
  _).blocking	
  //	
  OR	
  
!
(x	
  zipMapFold	
  y)(_	
  *	
  _)(0)(_	
  +	
  _).blocking	
  

where

x.zipMap(y)(f)	
  <-­‐-­‐>	
  x.zip(y).map(f.tupled)	
  
x.zipMapFold(y)(f)(z)(g)	
  <-­‐-­‐>	
  x.zip(y).map(f.tupled).fold(z)(g)	
  

Function 
that takes a tuple as a 

parameterFunction that takes 
two parameters



Benchmark Results
Scalar product (size = 107)

Without kernel fusion a majority of time spent in GC!
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Java LTQ
SingleLane FlowPool
MultiLane FlowPool
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Java LTQ
SingleLane FlowPool
MultiLane FlowPool
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Java LTQ
SingleLane FlowPool
MultiLane FlowPool

• FlowPools: unordered FlowSeqs 

• Benchmark: create and map



Experience
FlowPools and FlowSeqs have some things in 
common with JDK 8’s streams (package 
java.util.stream) 

• Give up some amount of determinism 

• To reduce object creations and GC overhead, Java 
streams are not data structures, but only views that 
process elements on demand 

• Computation only kicked off when a terminal 
operation, such as sum or reduce, is called



Applying FlowSeqs
• FlowSeqs are useful in the context of 

another dataflow-esque model: Rx 
(Reactive Extensions) 

• What is Rx? 

• Programming model based on observable 
data streams, such as event sources 

• Only minimal requirements on host 
language 

• There are implementations for most 
mainstream programming languages



Why Rx?

• Principled approach to composing 
observable data streams 

• A very general model for push-based, 
high-volume data streams 

• Language-agnostic 

• Many industrial applications



Rx Basics
trait Observable[T] { !
  def subscribe(observer: Observer[T]): Disposable!
}!
!
trait Observer[T] { !
  def onNext(value: T): Unit !
  def onError(error: Exception): Unit !
  def onCompleted(): Unit!
}!
!
trait Disposable { !
  def dispose(): Unit!
}



Rx: Behavioral Assumptions
• Calls to an instance of Observer[T] should follow 

the regular expression onNext(t)* (onCompleted() | 
onError(e))? 

• Implementations of Observer[T] can be assumed 
to be synchronized; conceptually they run under 
a lock 

• Resources associated with an observer should be 
cleaned up when onError or onCompleted is 
called. In particular, the subscription returned by 
the subscribe call of the observer will be disposed 
of by the observable as soon as the stream 
completes.



Implementing Observables

• Now we have the interfaces 

• Meijer describes a number of 
combinators to compose observables 

• Remaining challenge: efficient 
implementations of data processing steps 

• This is where FlowSeqs come in!



Observable FlowSeqs
• Ongoing work 

• Goal: Efficient parallel stream processing 
integrated with Rx model 

• Idea: Turn FlowSeqs into Observables 

• Seal corresponds to completing a stream 

• Required machinery already in place, but 
so far only internal to FlowSeq 
implementation 

• Combinators on the obtained streams can 
be implemented using FlowSeq’s 
combinators
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So,
What’s industry’s take 
on all of this?



What’s Hot in Industry?
• Typically dataflow properties relaxed 

• Library implementations 

• Try to incorporate ideas into mainstream 
runtime systems 

• Lots of libraries and frameworks that are 
similar to dataflow programming models 

• Rx, JDK 8 Streams, FlumeJava, Futures/
Promises, Storm, Spark, ...



Map
Big

Small
Determ. Non-determ.

Spark (Streaming)

CnC
FlowSeqs

I-structures

Oz dataflow vars Futures

JDK8 Streams

FlumeJava

Rx
Storm
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Phew, ok
So where are some 
places we can take 
Dataflow?



• How (much) should this map inform 
research directions? 

• Is transitioning from small to big data 
important? 

• Should a system provide controlled non-
determinism?

OPEN QUESTIONS:

WHY DON’T WE SEE THE SAME THING 
HAPPENING IN MULTICORE?

whY IS DATA FLOW SUCH A POPULAR IDEA IN 
DISTRIBUTED SYSTEMS?



• Are correct-by-construction programs 
feasible in a library-based approach to 
dataflow? 

• What kind of static checking is most useful 
for dataflow programs? 

• Which types? Which effects? 

• Which other programming models would 
be interesting to integrate with dataflow?

OPEN QUESTIONS:



Questions?



Dataflow vs. Stream Processing
• Stream Processing: 

• Works well for DSP or GPU-type applications 
(image, video, and digital signal processing) 

• Regular and repeating computations (stream 
graph often static): task, data, and pipeline 
parallelism 

• Example: StreamIt’s optimizations 

• Coarsen: fuse stateless sections of the graph 

• Data parallelize: parallelize stateless filters 

• Software pipeline: parallelize stateful filters

Sacrifice flexibility to 
enable more optimizations



• Dataflow: 

• Flow graph typically dynamically created/
changed 

• Flow graph often implicit (example: Oz) 

• Also used for symbolic computations, 
stream processing focuses on number 
crunching, filters, etc., instead 

• Challenges: 

• Optimization (hybrid static/dynamic?) 

• Language vs. library

Dataflow vs. Stream Processing


